Skip to main content
Log in

GPU Accelerated Lattice Boltzmann Simulation of a Cyanide-Release Accident in the Danjiangkou Reservoir

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

A graphics processing unit (GPU) accelerated two-dimensional contamination transport model is developed using the lattice Boltzmann method (LBM). The intrinsic parallel features of LBM make it particularly suitable for implementation on GPUs. After validation with two benchmarks, the model was applied to a cyanide-release accident in the Danjiangkou Reservoir, using a numerical combination of hydrodynamics and solute transport. The results show good agreement with an Environmental Fluid Dynamics Code (EFDC) model. A single GPU workstation speedup reaches 1.58 times that of a central processing unit (CPU) calculation alone. This speedup provides the opportunity for applying the model as a pollution accident information and decision support system for the Middle Route of the South to North Water Diversion Project in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Stiebler, M., Tolke, J., & Krafczyk, M. (2008). Advection diffusion lattice Boltzmann scheme for hierarchical grids. Computers & Mathematics with Applications, 55, 1576–1584.

    Article  Google Scholar 

  2. Gao, H., Li, H., & Wang, L.-P. (2013). Lattice Boltzmann simulation of turbulent flow laden with finite-size particles. Computers & Mathematics with Applications, 65, 194–210.

    Article  Google Scholar 

  3. Schoenherr, M., Kucher, K., Geier, M., Stiebler, M., Freudiger, S., & Krafczyk, M. (2011). Multi-thread implementations of the lattice Boltzmann method on non-uniform grids for CPUs and GPUs. Computers & Mathematics with Applications, 61(12), 3730–3743.

    Article  Google Scholar 

  4. McNamara, G.R., & Zanetti, G. (1988). Use of the Boltzmann equation to simulate lattice-gas automata. Physical Review Letters, 61(20), 2332–2335.

    Article  CAS  Google Scholar 

  5. Capel, P.D., Giger, W., Reichert, P., & Wanner, O. (1988). Accidental input of pesticides into the Rhine River. Environmental Science & Technology, 22, 992–997.

    Article  CAS  Google Scholar 

  6. Lelek, A., & Kohler, C. (1990). Restoration of fish communities of the Rhine River two years after a heavy pollution wave. Regulated River: Research & Management, 5, 57–66.

    Article  Google Scholar 

  7. Giger, W. (2009). The Rhine red, the fish dead-the 1986 Schweizerhalle disaster, a retrospect and long-term impact assessment. Environmental Science and Pollution Research, 16, 98–111.

    Article  Google Scholar 

  8. Koenig, R. (2000). Wildlife Deaths Are a Grim Wake-Up Call in Eastern Europe, Science. New Series, 287, 1737–1738.

    CAS  Google Scholar 

  9. Soldan, P., Pavonic, M., Boucek, J., & Kokes, J. (2001). Baia Mare Accident-Brief Ecotoxicological Report of Czech Experts. Ecotoxicology and Environmental Safety, 49, 255–261.

    Article  CAS  Google Scholar 

  10. Kraft, C., W. von Tumpling Jr., & Zachmann, D.W. (2006). The effects of mining in Northern Romania on the heavy metal distribution in sediments of the rivers Szamos and Tisza (Hungary). Acta Hydrochimica et Hydrobiologica, 34, 257–264.

    Article  CAS  Google Scholar 

  11. Xiong, B., Jiao, F., Huang, Y., Chen, J., Wang, W., & Chen, Y. (2002). Analysis on emergent disposal methods about NaCN pollution accident in Luohe river. Environmental Monitoring in China, 18, 8–11.

    Google Scholar 

  12. Li, Z., Yang, M., Li, D., Qi, R., Liu, H., Sun, J., & Qu, J. (2008). Nitrobenzene biodegradation ability of microbial communities in water and sediments along the songhua river after a nitrobenzene pollution event. Journal of Environmental Sciences-China, 20, 778–786.

    Article  CAS  Google Scholar 

  13. Zhang, W., Lin, X., & Su, X. (2010). Transport and fate modeling of nitrobenzene in groundwater after the songhua river pollution accident. Journal of Environmental Management, 91, 2378– 2384.

    Article  CAS  Google Scholar 

  14. Zhang, B., Qin, Y., Huang, M., Sun, Q., Li, S., Wang, L., & Yu, C. (2011). SD- GIS-based temporal-spatial simulation of water quality in sudden water pollution accidents. Computers & Geosciences, 37, 874–882.

    Article  CAS  Google Scholar 

  15. Vach, M., & Duong, V.M. (2011). Numerical Modeling of Flow Fields and Dispersion of Passive Pollutants in the Vicinity of the Temeln Nuclear Power Plant. Environmental Modeling & Assessment, 16(2), 135–143.

    Article  Google Scholar 

  16. He, Q., Peng, S., Zhai, J., & Xiao, H. (2011). Development and application of a water pollution emergency response system for the Three Gorges Reservoir in the Yangtze River. Journal of Environmental Sciences, 4, 595–600.

    Article  Google Scholar 

  17. Kim, K., Park, M., Min, J.-H., Ryu, I., Kang, M.-R., & Park, L.J. (2014). Simulation of algal bloom dynamics in a river with the ensemble Kalman filter. Journal of Hydrology, 519, 2810– 2821.

    Article  CAS  Google Scholar 

  18. Vacondio, R., Dal Palu, A., & Mignosa, P. (2014). GPU-enhanced Finite Volume Shallow Water solver for fast flood simulations. Environmental Modelling & Software, 57, 60–75.

    Article  Google Scholar 

  19. Chen, L., Yang, Z., & Liu, H. (2014). Numerical Simulations of Spread Characteristics of Toxic Cyanide in the Danjiangkou Reservoir in China under the Effects of Dam Cooperation. Mathematical Problems in Engineering, 2014, 1–10.

    Google Scholar 

  20. Monfared, S.A.H., Mirbagheri, S.A., & Sadrnejad, S.A. (2014). A Three-Dimensional Integrated Seasonal Separate Advection-Diffusion Model (ISSADM) to Predict Water Quality Patterns in the Chahnimeh Reservoir. Environmental Modeling & Assessment, 19(1), 71–83.

    Article  Google Scholar 

  21. Yan, J., Wang, L., Chen, L., Zhao, L., & Huang, B. (2015). A Dynamic Remote Sensing Data-Driven Approach for Oil SpillSimulation in the Sea. Remote Sensing, 7, 7105–7125.

    Article  Google Scholar 

  22. Xia, X., & Liang, Q. (2016). A GPU-accelerated smoothed particle hydrodynamics (SPH) model for the shallow water equations, Environmental Modelling &amp. Software, 75, 28–43.

  23. Bernaschi, M., Rossi, L., Benzi, R., Sbragaglia, M., & Succi, S. (2009). Graphics processing unit implementation of lattice Boltzmann models for flowing soft systems. Physical Review E, 80(6), 066707.

    Article  Google Scholar 

  24. Habich, J., Zeiser, T., Hager, G., & Wellein, G. (2011). Performance analysis and optimization strategies for a D3Q19 lattice Boltzmann kernel on nVIDIA GPUs using CUDA. Advances in Engineering Software, 42, 266–272.

    Article  Google Scholar 

  25. Gong, C., Liu, J., Chi, L., Huang, H., Fang, J., & Gong, Z. (2011). GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method. Journal of Computational Physics, 230, 6010–6022.

    Article  CAS  Google Scholar 

  26. Zhou, H., Mo, G., Wu, F., Zhao, J., Rui, M., & Cen, K. (2012). GPU implementation of lattice Boltzmann method for flows with curved boundaries. Computer Methods in Applied Mechanics and Engineering, 225-228, 65–73.

    Article  Google Scholar 

  27. Liu, H., Zhou, J.G., & Burrows, R. (2009). Multi-block lattice Boltzmann simulations of subcritical flow in open channel junctions. Computers & Fluids, 38, 1108–1117.

    Article  Google Scholar 

  28. Liu, H., Zhou, J.G., Li, M., & Zhao, Y. (2013). Multi-block lattice Boltzmann simulations of solute transport in shallow water flows. Advances in Water Resources, 58, 24–40.

    Article  Google Scholar 

  29. Zhou, J.G. (2002). A lattice Boltzmann model for the shallow water equations. Computer Methods in Applied Mechanics and Engineering, 191, 3527–3539.

    Article  Google Scholar 

  30. Liu, H., & Zhou, J.G. (2014). Lattice Boltzmann approach to simulating a wetting-drying front in shallow flows. Journal of Fluid Mechanics, 743, 32–59.

    Article  CAS  Google Scholar 

  31. Zhou, J.G. (2004). Lattice Boltzmann Methods for Shallow Water Flows, Springer.

  32. Li, Y., & Huang, P. (2009). A coupled lattice Boltzmann model for the shallow water-contamination system. International Journal for Numerical Methods in Fluids, 59, 195–213.

    Article  CAS  Google Scholar 

  33. Bhatnagar, P.L., Gross, E.P., & Krook, M. (1954). A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems. Physical Review, 94(3), 511–525.

    Article  CAS  Google Scholar 

  34. Junk, M., Klar, A., & Luo, L.-S. (2005). Asymptotic analysis of the lattice Boltzmann equation. Journal of Computational Physics, 210, 676–704.

    Article  Google Scholar 

  35. Tubbs, K.R., & Tsai, F.T.-C. (2011). GPU accelerated lattice Boltzmann model for shallow water flow and mass transport. International Journal for Numerical Methods in Engineering, 86, 316–334.

    Article  Google Scholar 

  36. Bolz, J., Farmer, I., Grinspun, E., & Schroder, P. (2003). Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM Transactions Graphics, 22(3), 917–924.

    Article  Google Scholar 

  37. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., & Hanrahan, P. (2004). Brook for GPUs: Stream Computing on Graphics Hardware. ACM Transactions on Graphics (TOG), 23 (3), 777–786.

    Article  Google Scholar 

  38. Priimak, D. (2014). Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations. Journal of Computational Physics, 278, 182–192.

    Article  Google Scholar 

  39. Wexler, E.J. (1992). Analytical Solutions for One-, Two-, and Three-Dimensional Solute Transport in Ground-water Systems with Uniform Flow. U.S.A.: United State Government Printing Office.

    Google Scholar 

  40. Li, S., Xu, Z., Cheng, X., & Zhang, Q. (2007). Dissolved trace elements, and heavy metals in the Danjiangkou Reservoir, China. Environmental Geology, 55, 977–983.

    Article  Google Scholar 

  41. Chen, S., & Doolen, G.D. (1998). Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 30, 329–364.

    Article  Google Scholar 

  42. Fischer, H., List, E., Koh, R., Imberger, J., & Brooks, N. (1979). Mixing in Inland and Coastal Waters. New York: Academic Press.

    Google Scholar 

Download references

Acknowledgments

The financial support of the National Natural Science Foundation of China (51379001) is gratefully acknowledged. And the first author would like to acknowledge the support of the China Scholarship Council (CSC) for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cater, J. & Liu, H. GPU Accelerated Lattice Boltzmann Simulation of a Cyanide-Release Accident in the Danjiangkou Reservoir. Environ Model Assess 23, 57–70 (2018). https://doi.org/10.1007/s10666-017-9554-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-017-9554-6

Keywords

Navigation