Skip to main content

Advertisement

Log in

Soil Organic Carbon (SOC) Equilibrium and Model Initialisation Methods: an Application to the Rothamsted Carbon (RothC) Model

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Carbon (C) emissions from anthropogenic land use have accelerated climate change. To reduce C emissions, dynamic models can be used to assess the impact of human drivers on terrestrial C sequestration. Model accuracy requires correct initialisation, since incorrect initialisation can influence the results obtained. Therefore, we sought to improve the initialisation of a process-based SOC model, RothC, which can estimate the effect of climate and land-use change on SOC. The most common initialisation involves running the model until equilibrium (‘spin-up run’), when the SOC pools stabilise (method 1). However, this method does not always produce realistic results. At our experimental sites, the observed SOC was not at equilibrium after 10 years, suggesting that the commonly used spin-up initialisation method assuming equilibrium might be improved. In addition to method 1, we tested two alternative initialisations for RothC that involved adjusting the total or individual SOC pool equilibrium values by regulating the C input during the entire spin-up initialisation period (method 2) and initialising each SOC pool with recently measured SOC values obtained by SOC fractionation (method 3). Analysis of the simulation accuracy for each model initialisation, quantified using the root mean square error (RMSE), indicated that a variant of method 2 that involved adjusting the equilibrium total SOC to observed values (method 2-T) generally showed less variation in the individual SOC pools and total SOC. Furthermore, as total SOC is the sum of all SOC pools, and because total SOC data are more readily available than the individual SOC pool data, we conclude that method 2-T is best for initialising RothC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. We validated model results with independently measured total SOC data for all sites. However, due to missing data, we used only one plot (conventional tillage) at Carlow .

  2. Hertfordshire’s total SOC was estimated from the total soil carbon, referring to the site manager’s soil database information.

  3. We validated the accuracy of this estimation with comparing the dead plant weight data regarding 2004.

  4. http://www.carbo-extreme.eu/

  5. If spin-up result of DPM was adjusted to fit to the measured DPM value, labelled method 2-D. Same as method 2-R, -B, -H and -T to highlight that RPM, BIO, HUM pools and Total SOC were adjusted, respectively.

References

  1. Alexander, L., Allen, S., Bindoff, N., Breon, F.-M., Church, J., Cubasch, U., Emori,., Forster, P., Friedlingstein, P., Gillett, N., Gregory, J., Hartmann, D., Jansen, E., Kirtman, B., Knutti, R., Kanikicharl, K. K., Lemke, P., Marotzke, J., Masson-Delmotte, V., Meehl, G., Mokhov, I., Piao, S., Ramaswamy, V., Randall, D., Rhein, M., Rojas, M., Sabine, C., Shindell, D., Talley, L., Vaughan, D., Xie, S.P., Stocker, T., Dahe, Q., and Plattner, G.K., 2013. Climate Change 2013: the physical science basis. Working Group I Contribution to the IPCC 5th Assessment Report Changes to the Underlying Scientific/Technical Assessment. Vol. IPCC-XXVI/Doc.4. The Intergovernmental Panel on Climate Change.

  2. Allard, V., Soussana, J., Falcimagne, R., Berbigier, P., Bonnefond, J., Ceschia, E., D’hour, P., Henault, C., Laville, P., Martin, C., et al. (2007). The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland. Agriculture, Ecosystems & Environment, 121(1), 47–58.

    Article  CAS  Google Scholar 

  3. Ammann, C., Flechard, C., Leifeld, J., Neftel, A., & Fuhrer, J. (2007). The carbon budget of newly established temperate grassland depends on management intensity. Agriculture, Ecosystems & Environment, 121(1–2), 5–20.

    Article  CAS  Google Scholar 

  4. Ammann, C., Spirig, C., Leifeld, J., & Neftel, A. (2009). Assessment of the nitrogen and carbon budget of two managed temperate grassland fields. Agriculture, Ecosystems & Environment, 133(3–4), 150–162.

    Article  CAS  Google Scholar 

  5. Basso, B., Gargiulo, O., Paustian, K., Robertson, G., Porter, C., Grace, P., & Jones, J. (2010). Procedures for initializing soil organic carbon pools in the DSSAT-CENTURY model for agricultural systems. Science Society of America Journal, 75(2011), 69–78.

    Google Scholar 

  6. Bruun, S., & Jensen, L. (2002). Initialisation of the soil organic matter pools of the Daisy model. Ecological Modelling, 153(3), 291–295.

    Article  Google Scholar 

  7. Carvalhais, N., Reichstein, M., Seixas, J., Collatz, G. J., Pereira, J. S., Berbigier, P., Carrara, A., Granier, A., Montagnani, L., Papale, D., et al. (2008). Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse parameter retrieval. Global Biogeochemical Cycles, 22(2).

  8. Carvalhais, N., Reichstein, M., Ciais, P., Collatz, G. J., Mahecha, M. D., Montagnani, L., Papale, D., Rambal, S., & Seixas, J. (2010). Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints. Global Change Biology, 16(10), 2813–2829.

    Article  Google Scholar 

  9. Coleman, K., and Jenkinson, D., 1999. Rothc-26.3-a model for the turnover of carbon in soil. model description and windows users guide. IACR-Rothamsted, Harpenden.

  10. Coleman, K., Jenkinson, D., Crocker, G., Grace, P., Klir, J., Körschens, M., Poulton, P., & Richter, D. (1997). Simulating trends in soil organic carbon in long-term experiments using rothc-26.3. Geoderma, 81(1), 29–44.

    Article  Google Scholar 

  11. Coleman, K. and Jenkinson, D. (1996). RothC-26.3 - A model the turnover of carbon in soil. In: Powlson DS, Smith P, Smith JU (ed) Evaluation of soil organic matter models using existing long-term datasets. NATO ASI Series I.

  12. R Core Team (2015). R: alanguage and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  13. Davis, P., Brown, J., Saunders, M., Lanigan, G., Wright, E., Fortune, T., Burke, J., Connolly, J., Jones, M., & Osborne, B. (2010). Assessing the effects of agricultural management practices on carbon fluxes: spatial variation and the need for replicated estimates of net ecosystem exchange. Agricultural and Forest Meteorology, 150(4), 564–574.

    Article  Google Scholar 

  14. De Bruijn, A., Calanca, P., Ammann, C., & Fuhrer, J. (2012). Differential long-term effects of climate change and management on stocks and distribution of soil organic carbon in productive grasslands. Biogeosciences, 9, 1055–1096.

    Article  Google Scholar 

  15. Del Grosso, S., Parton, W., Mosier, A., Ojima, D., Kulmala, A., & Phongpan, S. (2000). General model for N2O and N2 gas emissions from soils due to dentrification. Global Biogeochemical Cycles, 14(4), 1045–1060.

    Article  CAS  Google Scholar 

  16. Del Grosso, S., Parton, W., Mosier, A., Hartman, M., Brenner, J., Ojima, D., & Schimel, D. (2001). Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model. In M. Schaffer, L. Ma, & S. Hansen (Eds.), Modeling carbon and nitrogen dynamics for soil management (pp. 303–332). Boca Raton: CRC Press.

    Google Scholar 

  17. Dondini, M., Hastings, A., Saiz, G., Jones, M., & Smith, P. (2009). The potential of Miscanthus to sequester carbon in soils: comparing field measurements in Carlow, Ireland to model predictions. GCB Bioenergy, 1(6), 413–425.

    Article  CAS  Google Scholar 

  18. Flechard, C., Neftel, A., Jocher, M., Ammann, C., & Fuhrer, J. (2005). Bi-directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices. Global Change Biology, 11(12), 2114–2127.

    Article  Google Scholar 

  19. Flechard, C., Neftel, A., Jocher, M., Ammann, C., Leifeld, J., & Fuhrer, J. (2007). Temporal changes in soil pore space CO2 concentration and storage under permanent grassland. Agricultural and Forest Meteorology, 142(1), 66–84.

    Article  Google Scholar 

  20. Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., et al. (2005). Global consequences of land use. Science, 309(5734), 570–574.

    Article  CAS  Google Scholar 

  21. Guo, L., Falloon, P., Coleman, K., Zhou, B., Li, Y., Lin, E., & Zhang, F. (2007). Application of the rothc model to the results of long-term experiments on typical upland soils in northern China. Soil Use and Management, 23(1), 63–70.

    Article  CAS  Google Scholar 

  22. Harris, D., Horwáth, W., & van Kessel, C. (2001). Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Science Society of America Journal, 65(6), 1853–1856.

    Article  CAS  Google Scholar 

  23. Hashimoto, S., Wattenbach, M., & Smith, P. (2011). A new scheme for initializing process- based ecosystem models by scaling soil carbon pools. Ecological Modelling, 222(19), 3598–3602.

    Article  Google Scholar 

  24. IPCC (2014). Summary for policymakers. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, & L. L. White (Eds.), Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change (pp. 1–32). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  25. Jenkinson, D., & Rayner, J. (1977). The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science, 123(5), 298–305.

    Article  CAS  Google Scholar 

  26. Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–436.

    Article  Google Scholar 

  27. Klumpp, K., Tallec, T., Guix, N., & Soussana, J. (2011). Long-term impacts of agricultural practices and climatic variability on carbon storage in a permanent pasture. Global Change Biology, 17(12), 3534–3545.

    Article  Google Scholar 

  28. Lal, R. (2002). Why carbon sequestration in agricultural soils (pp. 21–30). Boca Raton: Lewis Publishers.

    Book  Google Scholar 

  29. Leifeld, J., Reiser, R., & Oberholzer, H. (2009). Consequences of conventional versus organic farming on soil carbon. Results from a 27-year field experiment. Agronomy Journal, 101, 1–15.

    Article  Google Scholar 

  30. Leifeld, J., Ammann, C., Neftel, A., & Fuhrer, J. (2011). A comparison of repeated soil inventory and carbon flux budget to detect soil carbon stock changes after conversion from cropland to grasslands. Global Change Biology, 17(11), 3366–3375.

    Article  Google Scholar 

  31. Li, C., Frolking, S., & Harriss, R. (1994). Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles, 8(3), 237–254.

    Article  CAS  Google Scholar 

  32. Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., et al. (2010). Climate change impacts, adaptive capacity, and vulnerability of european forest ecosystems. Forest Ecology and Management, 259(4), 698–709.

    Article  Google Scholar 

  33. Mdaghri-Alaoui, A., & Eugster, W. (2001). Field determination of the water balance of the areuse river delta, Switzerland. Hydrological Sciences Journal, 46(5), 747–760.

    Article  CAS  Google Scholar 

  34. Osborne, B., Saunders, M., Walmsley, D., Jones, M., & Smith, P. (2010). Key questions and uncertainties associated with the assessment of the cropland greenhouse gas balance. Agriculture, Ecosystems & Environment, 139(3), 293–301.

    Article  Google Scholar 

  35. Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Van Wesemael, B., Schumacher, J., & Gensoir, A. (2011). Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. Global Change Biology, 17(7), 2415–2427.

    Article  Google Scholar 

  36. Poeplau, C., Don, A., Dondini, M., Leifeld, J., Nemo, R., Schumacher, J., Senapati, N., & Wiesmeier, M. (2013). Reproducibility of a soil organic carbon fractionation method to derive Roth C carbon pools. European Journal of Soil Science, 64(6), 735–746.

    Article  CAS  Google Scholar 

  37. Schrumpf, M., Schulze, E., Kaiser, K., & Schumacher, J. (2011). How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences Discussions, 8(1), 723–769.

    Article  Google Scholar 

  38. Senapati, N., Smith, P., Wilson, B., Yeluripati, J., Daniel, H., Lockwood, P., & Ghosh, S. (2013). Projections of changes in grassland soil organic carbon under climate change are relatively insensitive to methods of model initialization. European Journal of Soil Science, 64, 229–238.

    Article  CAS  Google Scholar 

  39. Shirato, Y., Jomura, M., Wagai, R., Kondo, M., Tanabe, K., & Uchida, M. (2013). Deviations between observed and Roth C-simulated δ14C values despite improved IOM initialization. European Journal of Soil Science, 64(5), 576–585.

    Article  CAS  Google Scholar 

  40. Smith, J., Smith, P., Monaghan, R., & MacDonald, A. (2002). When is a measured soil organic matter fraction equivalent to a model pool? European Journal of Soil Science, 53(3), 405–416.

    Article  CAS  Google Scholar 

  41. Smith, P. (2004). How long before a change in soil organic carbon can be detected? Global Change Biology, 10(11), 1878–1883.

    Article  Google Scholar 

  42. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H. H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, R. J., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., & Smith, J. U. (2008). Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society, B., 363, 789–813.

    Article  CAS  Google Scholar 

  43. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., et al. (2007). Agriculture. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, chapter 8, pp. 497–540. Cambridge University Press.

  44. Soon, Y., & Hendershot, W. (1993). Soil sampling and methods of analysis. USA: CRC Press .Ch. 16

    Google Scholar 

  45. Soussana, J., Allard, V., Pilegaard, K., Ambus, P., Amman, C., Campbell, C., Ceschia, E., Clifton-Brown, J., Czóbel, S., Domingues, R., et al. (2007). Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agriculture, Ecosystems & Environment, 121(1), 121–134.

    Article  CAS  Google Scholar 

  46. Van Groenigen, J., Velthof, G., Oenema, O., Van Groenigen, K., & Van Kessel, C. (2010a). Towards an agronomic assessment of N2O emissions: a case study for arable crops. European Journal of Soil Science, 61(6), 903–913.

    Article  CAS  Google Scholar 

  47. Van Groenigen, K., Bloem, J., Bååth, E., Boeckx, P., Rousk, J., Bodé, S., Forristal, D., & Jones, M. (2010b). Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biology and Biochemistry, 42(1), 48–55.

    Article  CAS  Google Scholar 

  48. Van Groenigen, K., Hastings, A., Forristal, D., Roth, B., Jones, M., & Smith, P. (2011). Soil C storage as affected by tillage and straw management: an assessment using field measurements and model predictions. Agriculture, Ecosystems & Environment, 140(1), 218–225.

    Article  Google Scholar 

  49. Walmsley, D., Siemens, J., Kindler, R., Kirwan, L., Kaiser, K., Saunders, M., Kaupenjohann, M., & Osborne, B. (2011). Dissolved carbon leaching from an Irish cropland soil is increased by reduced tillage and cover cropping. Agriculture, Ecosystems & Environment., 142(3), 393–402.

    Article  Google Scholar 

  50. Wurster, C., Saiz, G., Calder, A., & Bird, M. (2010). Recovery of organic matter from mineral-rich sediment and soils for stable isotope analyses using static dense media. Rapid Communications in Mass Spectrometry, 24(1), 165–168.

    Article  CAS  Google Scholar 

  51. Wutzler, T., & Reichstein, M. (2007). Soils apart from equilibrium? Consequences for soil carbon balance modelling. Biogeosciences, 4(1), 125–136.

    Article  CAS  Google Scholar 

  52. Yang, X., Zhang, X., Fang, H., Zhu, P., Ren, J., & Wang, L. (2003). Long-term e ects of fertilization on soil organic carbon changes in continuous corn of northeast China: RothC model simulations. Environmental Management, 32(4), 459–465.

    Article  CAS  Google Scholar 

  53. Yeluripati, J., van Oijen, M., Wattenbach, M., Neftel, A., Ammann, A., Parton, W., & Smith, P. (2009). Bayesian calibration as a tool for initialising the carbon pools of dynamic soil models. Soil Biology and Biochemistry, 41(12), 2579–2583.

    Article  CAS  Google Scholar 

  54. Zimmermann, M., Leifeld, J., Schmidt, M., Smith, P., & Fuhrer, J. (2007). Measured soil organic matter fractions can be related to pools in the RothC model. European Journal of Soil Science, 58, 658–667.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Angus Calder and Cheryl Wood (University of St Andrews, UK) who let us use the laboratory facilities to perform the soil fractionation and their helpful support. The authors are also grateful to Olivier Darsonville, Jean- Luc Ollier, Marine Zwicke and Pierre Legoueix for their technical supports at INRA Clermont- Ferrand, UREP, France and also Alex Coad, European Commission - Joint Research Centre for advice on statistics. Funding to support this work was provided by FP7 project GHG- Europe (Grant No. 244122). Pete Smith is a Royal Society-Wolfson Research Merit Award holder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nemo.

Appendix

Appendix

Table 3 Tests of significant differences between contrasting management for each SOC fraction and total SOC (t C ha−1) 0–20 cm. Upper: Estimates (t value) and lower: R2 indicate significant differences of total SOC (t C ha−1) due to management system. For more detail of SOC fractions, see section 2.2
Fig. 5
figure 5

Concept of adapting SOC fractions to RothC SOC pools (Zimmermann et al. [54])

Fig. 6
figure 6

Changes in C input (t C ha−1) according to different methods in the method 2, compared to method 1

Fig. 7
figure 7

Required number of years to attain the equilibrium state with average recent management/weather data for each site. Equilibrium point is SOC changes become <0.0001 (t C ha−1)

Fig. 8
figure 8

RMSE: model performance accuracy test with each site SOC pools (t C ha−1) data for each initialisation method. Regarding the sites where several years of validation data are available, the result is shown as box plot. Boxes give the median, the 25 and 75 % percentiles. M1 method 1, M3 method 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemo, Klumpp, K., Coleman, K. et al. Soil Organic Carbon (SOC) Equilibrium and Model Initialisation Methods: an Application to the Rothamsted Carbon (RothC) Model. Environ Model Assess 22, 215–229 (2017). https://doi.org/10.1007/s10666-016-9536-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-016-9536-0

Keywords