A Model for Simulating the Soil Organic Carbon Pool of Steppe Ecosystems


In this research, the improved Terrestrial Ecosystem Regional (TECO-R) model was adapted to steppe ecosystems and then utilized to simulate the soil organic carbon pool in the period from 1989 to 2011 (excluding 1994, 2002, 2009, and 2010) for a typical steppe in Xilingol League of Inner Mongolia in China. The improved TECO-R model is an ecological model in combination of remote sensing data, which allows the spatial scale for the analysis of soil organic carbon which is not limited to vegetation or soil type. The spatial and temporal resolution advantages of remote sensing image can be well utilized in this model. The results indicate that in addition to an accurate simulation of the soil carbon pool of a steppe ecosystem, the vegetation aboveground carbon pool, grazing intensity of herbivores, mowing coefficient, litter carbon pool, root carbon pools of different vegetation layers, root-shoot ratio, actual residence time of different carbon pools, and allocation coefficients of different carbon pools in corresponding years are also available from the TECO-R model. Some of the above data are difficult to obtain through macro-observation but can be simulated with the TECO-R model by combining the model with input data; this is very important for a correct understanding of the feedback relationships between the steppe ecosystem’s carbon cycle and climate change (e.g., global warming) and human activities such as grazing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Mokany, K., Raison, R., & Prokushkin, A. S. (2006). Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology, 12(1), 84–96.

    Article  Google Scholar 

  2. 2.

    Straton, A. (2006). A complex systems approach to the value of ecological resources. Ecological Economics, 56(3), 402–411.

    Article  Google Scholar 

  3. 3.

    Costanza, R., D'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253–260.

    CAS  Article  Google Scholar 

  4. 4.

    Aitkenhead, M. J., Albanito, F., Jones, M. B., & Black, H. (2011). Development and testing of a process-based model (MOSES) for simulating soil processes, functions and ecosystem services. Ecological Modelling, 222(20–22), 3795–3810.

    CAS  Article  Google Scholar 

  5. 5.

    Chen, X. D., Lupi, F., An, L., Sheely, R., Vina, A., & Liu, J. G. (2012). Agent-based modeling of the effects of social norms on enrollment in payments for ecosystem services. Ecological Modelling, 229(SI), 16–24.

  6. 6.

    Ni, J. (2002). Carbon storage in grasslands of China. Journal of Arid Environments, 50(2), 205–218.

    Article  Google Scholar 

  7. 7.

    Bailey, J. S., Deng, Y., & Smith, R. V. (2001). Changes in soil organic carbon storage under grassland as evidenced by changes in sulphur input–output budgets. Chemosphere, 42(2), 141–151.

    CAS  Article  Google Scholar 

  8. 8.

    Yu, D. S., Shi, X. Z., Wang, H. J., Sun, W. X., Chen, J. M., Liu, Q. H., et al. (2007). Regional patterns of soil organic carbon stocks in China. Journal of Environmental Management, 85(3), 680–689.

    CAS  Article  Google Scholar 

  9. 9.

    Singh, S. K., Singh, A. K., Sharma, B. K., & Tarafdar, J. C. (2007). Carbon stock and organic carbon dynamics in soils of Rajasthan, India. Journal of Arid Environments, 68(3), 408–421.

    Article  Google Scholar 

  10. 10.

    Horta, A., & Soares, A. (2010). Data integration model to assess soil organic carbon availability. Geoderma, 160(2), 225–235.

    CAS  Article  Google Scholar 

  11. 11.

    Huang, X., Senthilkumar, S., Kravchenko, A., Thelen, K., & Qi, J. (2007). Total carbon mapping in glacial till soils using near-infrared spectroscopy, Landsat imagery and topographical information. Geoderma, 141(1–2), 34–42.

    CAS  Article  Google Scholar 

  12. 12.

    Gao, J., Pan, G., Jiang, X., Pan, J., & Zhuang, D. (2008). Land-use induced changes in topsoil organic carbon stock of paddy fields using MODIS and TM/ETM analysis: a case study of Wujiang County, China. Journal of Environmental Sciences, 20(7), 852–858.

    CAS  Article  Google Scholar 

  13. 13.

    Gomez, C., Viscarra Rossel, R. A., & McBratney, A. B. (2008). Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study. Geoderma, 146(3–4), 403–411.

    CAS  Article  Google Scholar 

  14. 14.

    McBratney, A. (2011). Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils-Critical review and research perspectives. Soil Biology and Biochemistry, 43(7), 1398–1410.

    Article  Google Scholar 

  15. 15.

    Ardo, J., & Olsson, L. (2003). Assessment of soil organic carbon in semi-arid Sudan using GIS and the CENTURY model. Journal of Arid Environments, 54(4), 633–651.

    Article  Google Scholar 

  16. 16.

    Bandaranayake, W. J., Qian, Y. L., Parton, W. J., Ojima, D. S., & Follett, R. (2003). Estimation of soil organic carbon changes in turfgrass systems using the CENTURY model. Agronomy Journal, 95(3), 558–563.

  17. 17.

    Whitmore, A. P. (2007). Describing the transformation of organic carbon and nitrogen in soil using the MOTOR system. Computers and Electronics in Agriculture, 55(2), 71–88.

    Article  Google Scholar 

  18. 18.

    Ren, W., Tian, H., Chen, G., Liu, M., Zhang, C., Chappelka, A. H., et al. (2007). Influence of ozone pollution and climate variability on net primary productivity and carbon storage in China’s grassland ecosystems from 1961 to 2000. Environmental Pollution, 149(3), 327–335.

    CAS  Article  Google Scholar 

  19. 19.

    Lardy, R., Bellocchi, G., & Soussana, J. F. (2011). A new method to determine soil organic carbon equilibrium. Environmental Modelling and Software, 26(12), 1759–1763.

    Google Scholar 

  20. 20.

    Barrett, D. J. (2002). Steady state turnover time of carbon in the Australian terrestrial biosphere. Global Biogeochemical Cycles, 16(4), 1–21.

    Article  Google Scholar 

  21. 21.

    Zhou, T., Shi, P. J., Jia, G. S., Li, X. J., & Luo, Y. Q. (2010). Spatial patterns of ecosystem carbon residence time in Chinese forests. China Earth Sciences, 53(8), 1229–1240.

    CAS  Article  Google Scholar 

  22. 22.

    Zhou, T., & Luo, Y. (2008). Spatial patterns of ecosystem carbon residence time and NPP-driven carbon uptake in the conterminous United States. Global Biogeochemical Cycles, 22(GB3032), 1–15.

    CAS  Google Scholar 

  23. 23.

    Roerink, G. J., Menenti, M., & Verhoef, W. (2000). Reconstructing cloud free NDVI composites using Fourier analysis of time series. International Journal of Remote Sensing, 21(9), 1911–1917.

    Article  Google Scholar 

  24. 24.

    Jakubauskas, M. E., Legates, D. R., & Kastens, J. H. (2001). Harmonic analysis of time-series AVHRR NDVI data. Photogrammetric Engineering and Remote Sensing, 67(4), 461–470.

    Google Scholar 

  25. 25.

    Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., & Schulze, E. D. (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108(3), 389–411.

    Article  Google Scholar 

  26. 26.

    Ren, S. (1996). Dynamic Monitoring of China's northern grassland animal husbandry (2): China’s northern grassland animal husbandry dynamic monitoring data sets. Inner Mongolia University Press.

  27. 27.

    Zhu, W., Pan, Y., He, H., Yu, D., & Hu, H. (2006). Simulation of maximum light use efficiency for some typical vegetation types in China. Chinese Science Bulletin, 51(4), 457–463.

    CAS  Article  Google Scholar 

  28. 28.

    Ma, W., & Fang, J. (2006). R:S ratios of temperate steppe and the environmental controls in Inner Mongolia. Scientiarum Naturalium Universitatis Pekinensis, 42(6), 774–778.

    Google Scholar 

  29. 29.

    Zhu, W. (2005). Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing and its relationship with global climate change. Beijing: Beijing Normal University.

    Google Scholar 

  30. 30.

    Schimel, D. S., Braswell, B. H., Holland, E. A., Mckeown, R., Ojima, D. S., Painter, T. H., et al. (1994). Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles, 8(3), 279–293.

    CAS  Article  Google Scholar 

  31. 31.

    Randerson, J. T., Thompson, M. V., Malmstrom, C. M., Field, C. B., & Fung, I. Y. (1996). Substrate limitations for heterotrophs: implications for models that estimate the seasonal cycle of atmospheric CO2. Global Biogeochemical Cycles, 10(4), 585–602.

    CAS  Article  Google Scholar 

  32. 32.

    Zhou, G., & Zhang, X. (1996). Study on Chinese climate-vegetation relationship. Chinese Journal of Plant Ecology, 20(2), 113–119.

    Google Scholar 

  33. 33.

    Zhou, G., & Zhang, X. (1995). A natural vegetation NPP model. Chinese Journal of Plant Ecology, 19(3), 193–200.

    Google Scholar 

  34. 34.

    Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38(1), 55–94.

    Article  Google Scholar 

  35. 35.

    Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., et al. (1993). Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7(4), 811–841.

    Article  Google Scholar 

  36. 36.

    Saxton, K. E., Rawls, W. J., Romberger, J. S., & Papendick, R. I. (1986). Estimating generalized soil-water characteristics from texture. SoilScience Society of America Journal, 50(4), 1031–1036.

    Article  Google Scholar 

  37. 37.

    Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51(5), 1173–1179.

    CAS  Article  Google Scholar 

  38. 38.

    Feng, X., & Cai, D. (2004). Soil temperature in relation to air temperature, altitude and latitude. Acta Pedologica Sinica, 41(3), 489–491.

    Google Scholar 

  39. 39.

    Luo, Y. Q., White, L. W., Canadell, J. G., DeLucia, E. H., Ellsworth, D. S., Finzi, A. C., et al. (2003). Sustainability of terrestrial carbon sequestration: a case study in Duke Forest with inversion approach. Global Biogeochemical Cycles, 17(1), 1–21.

    CAS  Article  Google Scholar 

  40. 40.

    Haupt, R. L., & Haupt, S. E. (2004). Practical Genetic Algorithms. 2nd ed.John Wiley & Sons Publication Inc.

  41. 41.

    Wang, Y., Chen, Z., & Tieszen, L. T. (1998). Distribution of soil organic carbon in the major grasslands of Xinguole, Inner Mongolia, China. Acta Phytoecologica Sinica, 22(6), 545–551.

    Google Scholar 

  42. 42.

    Han, X. (2011). Ecosystem observation data sets: grassland and desert ecosystems (the Xilinguole Station from 2005 to 2008).China Agriculture Press.

  43. 43.

    Wessels, K. J., Prince, S. D., Zambatis, N., Macfadyen, S., Frost, P. E., & Van Zyl, D. (2006). Relationship between herbaceous biomass and 1-km2 Advanced Very High Resolution Radiometer (AVHRR) NDVI in Kruger National Park, South Africa. International Journal of Remote Sensing, 27(5–6), 951–973.

    Article  Google Scholar 

  44. 44.

    Shoshany, M., & Karnibad, L. (2011). Mapping shrubland biomass along Mediterranean climatic gradients: the synergy of rainfall-based and NDVI-based models. International Journal of Remote Sensing, 32(24), 9497–9508.

    Article  Google Scholar 

  45. 45.

    Le Maire, G., Marsden, C., Nouvellon, Y., Grinand, C., Hakamada, R., Stape, J. L., et al. (2011). MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass. Remote Sensing of Environment, 115(10), 2613–2625.

    Article  Google Scholar 

  46. 46.

    Zhang, L. (2006). Research on remote sensing models for grassland vegetation biomass monitoring in Xilinguole. Inner Mongolia: Inner Mongolia Agricultural University.

    Google Scholar 

  47. 47.

    Miehle, P., Livesley, S. J., Li, C. S., Feikema, P. M., Adams, M. A., & Arndt, S. K. (2006). Quantifying uncertainty from large-scale model predictions of forest carbon dynamics. Global Change Biology, 12(8), 1421–1434.

    Article  Google Scholar 

  48. 48.

    Wu, H. B., Guo, Z. T., & Peng, C. H. (2003). Distribution and storage of soil organic carbon in China. Global Biogeochemical Cycles, 17(2), 1048.

    Article  Google Scholar 

  49. 49.

    Jensen, J. R. (1996). Introductory Digital Image Processing: a Remote Sensing Perspective.Prentice Hall.

  50. 50.

    Raich, J. W., & Schlesinger, W. H. (1992). The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Series B-Chemical and Physical Meteorology, 44(2), 81–99.

    Article  Google Scholar 

  51. 51.

    Obrien, B. J., & Stout, J. D. (1978). Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biology & Biochemistry, 10(4), 309–317.

    CAS  Article  Google Scholar 

  52. 52.

    Liu, P., Huang, J. H., Han, X. G., & Sun, O. J. (2009). Litter decomposition in semiarid grassland of Inner Mongolia, China. Rangeland Ecology and Management, 62(4), 305–313.

    Article  Google Scholar 

  53. 53.

    Abberton, M., Conant, R., & Batello, C. (2009). Grassland carbon sequestration: management, policy and economics. Proceedings of the Workshop on the role of grassland carbon sequestration in the mitigation of climate change.

  54. 54.

    Li, B. Y., Tang, H. P., Wu, L. H., Li, Q. H., & Zhou, C. R. (2012). Relationships between the soil organic carbon density of surface soils and the influencing factors in differing land uses in Inner Mongolia. Environmental Earth Sciences, 65(1), 195–202.

    CAS  Article  Google Scholar 

  55. 55.

    Wang, Z. W., Hao, X. Y., Shan, D., Han, G. D., Zhao, M. L., Willms, W. D., et al. (2011). Influence of increasing temperature and nitrogen input on greenhouse gas emissions from a desert steppe soil in Inner Mongolia. Soil Science and Plant Nutrition, 57(4), 508–518.

    CAS  Article  Google Scholar 

  56. 56.

    Kang, X. M., Hao, Y. B., Li, C. S., Cui, X. Y., Wang, J. Z., Rui, Y. C., et al. (2011). Modeling impacts of climate change on carbon dynamics in a steppe ecosystem in Inner Mongolia, China. Journal of Soils and Sediments, 11(4), 562–576.

    CAS  Article  Google Scholar 

  57. 57.

    Moreau, S., Bosseno, R., Gu, X. F., & Baret, F. (2003). Assessing the biomass dynamics of Andean bofedal and totora high-protein wetland grasses from NOAA/AVHRR. Remote Sensing of Environment, 85(4), 516–529.

    Article  Google Scholar 

  58. 58.

    Li, Z. (2012). Carbon storage and flux of ecosystem services functions in typical steppe in Inner Mongolia. Beijing: Beijing Normal University.

    Google Scholar 

  59. 59.

    White, L. W., Luo, Y., & Xu, T. (2005). Carbon sequestration: inversion of FACE data and prediction. Applied Mathematics and Computation, 163(2), 783–800.

    Article  Google Scholar 

  60. 60.

    Raupach, M. R., Rayner, P. J., Barrett, D. J., DeFries, R. S., Heimann, M., Ojima, D. S., et al. (2005). Model-data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications. Global Change Biology, 11(3), 378–397.

    Article  Google Scholar 

  61. 61.

    Xu, T., White, L., Hui, D. F., & Luo, Y. Q. (2006). Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction. Global Biogeochemical Cycles, 20(GB20072), 1–15.

    Google Scholar 

Download references


Supported by the National Basic Research Program of China (973 Program: 2014CB138803) and National Natural Science Foundation of China (31570451, 41161067).

Author information



Corresponding author

Correspondence to Li Xiaobing.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guoqing, L., Xiaobing, L., Tao, Z. et al. A Model for Simulating the Soil Organic Carbon Pool of Steppe Ecosystems. Environ Model Assess 21, 339–355 (2016). https://doi.org/10.1007/s10666-015-9488-9

Download citation


  • Steppe ecosystem
  • TECO-R model
  • Soil organic carbon
  • Carbon residence time
  • Carbon pool