Environmental Modeling & Assessment

, Volume 21, Issue 3, pp 371–389 | Cite as

The Cost of Co-viability in the Australian Northern Prawn Fishery

  • Sophie GourguetEmail author
  • Olivier Thébaud
  • Sarah Jennings
  • L. Richard Little
  • Catherine M. Dichmont
  • Sean Pascoe
  • Roy A. Deng
  • Luc Doyen


Fisheries management must address multiple, often conflicting objectives in a highly uncertain context. In particular, while the bio-economic performance of trawl fisheries is subject to high levels of biological and economic uncertainty, the impact of trawling on broader biodiversity is also a major concern for their management. The purpose of this study is to propose an analytical framework to formally assess the trade-offs associated with balancing biological, economic and non-target species conservation objectives. We use the Australian Northern Prawn Fishery (NPF), which is one of the most valuable federally managed commercial fisheries in Australia, as a case study. We develop a stochastic co-viability assessment of the fishery under multiple management objectives. Results show that, due to the variability in the interactions between the fishery and the ecosystem, current management strategies are characterized by biological and economic risks. Results highlight the trade-offs between respecting biological, economic and non-target species conservation constraints at each point in time with a high probability and maximizing the net present value of the fishery.


Bio-economic modeling Co-viability cost Conflicting management objectives Trawling impacts Uncertainty Northern prawn fishery 



This work was supported by the French Research Agency ANR through the project Adhoc, the Australian Fisheries Research and Development Corporation (FRDC), the University of Tasmania (UTAS)/ Commonwealth Scientific and Industrial Research Organisation (CSIRO) PhD Program in Quantitative Marine Science and the French Research Institute for Exploitation of the Sea (Ifremer). We are grateful to the CSIRO researchers providing us with access to data and knowledge of the fishery, and especially to Rodrigo Bustamante and Rik Buckworth for helpful discussions on the model and the case study. We also thank two anonymous reviewers and the associate editor for their helpful comments on an earlier version of the manuscript.


  1. 1.
    ABARES (2010). Australian commodity statistics 2010. Tech. rep., Australian Bureau of Agricultural and Resource Economics, Canberra, Australia.Google Scholar
  2. 2.
    AFMA (2012). Ecological Risk Management: report for the Northern Prawn Fishery tiger and banana prawn sub-fisheries. Tech. rep., Australian Fisheries Management Authority, Canberra, Australia.Google Scholar
  3. 3.
    AFMA, & CSIRO (2012). Harvest Strategy for the Northern Prawn Fishery under input controls. Tech. rep., Canberra.Google Scholar
  4. 4.
    Alverson, D., Freeberg, M., Murawski, S., & Pope, J. (1994). A global assessment of fisheries bycatch and discards. FAO Fisheries Technical Paper, 339, 233.Google Scholar
  5. 5.
    Aubin, J.P. (1990). A survey of viability theory. SIAM Journal on Control and Optimization, 28(4), 749–788.CrossRefGoogle Scholar
  6. 6.
    Banks, R., Clarke, S., Staples, D., & Souter, D. (2012). Australia northern prawn fishery: public comment draft report, (p. 397): MRAG Americas, Inc.Google Scholar
  7. 7.
    Baumgärtner, S., & Quaas, M.F. (2009). Ecological-economic viability as a criterion of strong sustainability under uncertainty. Ecological Economics, 68(7), 2008–2020.CrossRefGoogle Scholar
  8. 8.
    Béné, C., Doyen, L., & Gabay, D. (2001). A viability analysis for a bio-economic model. Ecological Economics, 36(3), 385– 396.CrossRefGoogle Scholar
  9. 9.
    Bertignac, M., & De Pontual, H. (2007). Consequences of bias in age estimation on assessment of the northern stock of European hake (Merluccius merluccius) and on management advice. ICES Journal of Marine Science: Journal du Conseil, 64(5), 981–988.CrossRefGoogle Scholar
  10. 10.
    Brewer, D., Heales, D., Milton, D., Dell, Q., Fry, G., Venables, B., & Jones, P. (2006). The impact of turtle excluder devices and bycatch reduction devices on diverse tropical marine communities in Australia’s Northern prawn trawl fishery. Fisheries Research, 81(2), 176–188.CrossRefGoogle Scholar
  11. 11.
    Bustamante, R.H., Dichmont, C.M., Ellis, N., Griffiths, S., Rochester, W.A., Burford, M.A., Rothlisberg, P.C., Dell, Q., Tonks, M., Lozano-Montes, H., Deng, R., Wassenberg, T., Okey, T. A., Revill, A., van der Velde, J., Moeseneder, C., Cheers, S., Donovan, A., Salini, T., Fry, G., Tickell, S., Pascual, R., Smith, F., Morello, E., & Taranto, T. (2010). Effects of trawling on the benthos and biodiversity: Development and delivery of a Spatially-explicit Management Framework for the Northern Prawn Fishery. Final report to the project FRDC 2005/050. Tech. rep. Cleveland: CSIRO Marine and Atmospheric Research.Google Scholar
  12. 12.
    Caddy, J.F., & Mahon, R. (1995). Reference points for fisheries management. FAO fisheries technical paper, 347, 83.Google Scholar
  13. 13.
    Charles, A. T. (1989). Bio-socio-economic fishery models: labour dynamics and multi-objective management. Canadian Journal of Fisheries and Aquatic Sciences, 46(8), 1313–1322.CrossRefGoogle Scholar
  14. 14.
    Cheung, W.W.L., & Sumaila, U.R. (2008). Trade-offs between conservation and socio-economic objectives in managing a tropical marine ecosystem. Ecological Economics, 66(1), 193–210.CrossRefGoogle Scholar
  15. 15.
    Crutchfield, J.A. (1973). Economic and political objectives in fishery management. Transactions of the American Fisheries Society, 102(2), 481–491.CrossRefGoogle Scholar
  16. 16.
    De Lara, M., & Martinet, V. (2009). Multi-criteria dynamic decision under uncertainty: a stochastic viability analysis and an application to sustainable fishery management. Mathematical Biosciences, 217(2), 118–124.CrossRefGoogle Scholar
  17. 17.
    Dichmont, C.M., Punt, A.E., Deng, A.R., Dell, Q., & Venables, W. (2003). Application of a weekly delay-difference model to commercial catch and effort data for tiger prawns in Australia’s Northern Prawn Fishery. Fisheries Research, 65(1-3), 335– 350.CrossRefGoogle Scholar
  18. 18.
    Dichmont, C.M., Deng, A.R., Punt, A.E., Ellis, N., Venables, W., Kompas, T., Ye, Y., Zhou, S., & Bishop, J. (2008). Beyond biological performance measures in Management Strategy Evaluation: bringing in economics and the effects of trawling on the benthos. Fisheries Research, 94(3), 238–250.CrossRefGoogle Scholar
  19. 19.
    Dichmont, C.M., Pascoe, S., Kompas, T., Punt, A.E., & Deng, A.R. (2010). On implementing maximum economic yield in commercial fisheries. Proceedings of the National Academy of Sciences, 107(1), 16–21.CrossRefGoogle Scholar
  20. 20.
    Dichmont, C.M., Ellis, N., Bustamante, R.H., Deng, A.R., Tickell, S., Pascual, R., Lozano-Montes, H., & Griffiths, S. (2013). EDITOR’S CHOICE: Evaluating marine spatial closures with conflicting fisheries and conservation objectives. Journal of Applied Ecology, 50(4), 1060–1070.CrossRefGoogle Scholar
  21. 21.
    Die, D.J., & Ellis, N. (1999). Aggregation dynamics in penaeid fisheries: banana prawns (Penaeus merguiensis) in the Australian Northern Prawn Fishery. Marine and freshwater research, 50(7), 667–675.CrossRefGoogle Scholar
  22. 22.
    Doyen, L., & De Lara, M. (2010). Stochastic viability and dynamic programming. Systems & Control Letters, 59(10), 629–634.CrossRefGoogle Scholar
  23. 23.
    Doyen, L., & Martinet, V. (2012). Maximin, viability and sustainability. Journal of Economic Dynamics and Control, 36(9), 1414–1430.CrossRefGoogle Scholar
  24. 24.
    Doyen, L., Thébaud, O., Béné, C., Martinet, V., Gourguet, S., Bertignac, M., Fifas, S., & Blanchard, F. (2012). A stochastic viability approach to ecosystem-based fisheries management. Ecological Economics, 75, 32–42.CrossRefGoogle Scholar
  25. 25.
    Dulvy, N.K., Metcalfe, J.D., Glanville, J., Pawson, M.G., & Reynolds, J.D. (2000). Fishery stability, local extinctions, and shifts in community structure in skates. Conservation Biology, 14(1), 283–293.CrossRefGoogle Scholar
  26. 26.
    Ellis, N., Pantus, F., & Pitcher, C.R. (2014). Scaling up experimental trawl impact results to fishery management scales—a modelling approach for a hot time. Canadian Journal of Fisheries and Aquatic Sciences, 71 (5), 733–746.CrossRefGoogle Scholar
  27. 27.
    FAO. (1996). Precautionary approach to capture fisheries and species introduction. Tech. Rep. 2. Rome: FAO Technical Guidelines for Responsible Fisheries.Google Scholar
  28. 28.
    Fry, G.C., Milton, D.A., & Wassenberg, T. (2001). The reproductive biology and diet of sea snake bycatch of prawn trawling in Northern Australia: characteristics important for assessing the impacts on populations. Pacific conservation biology, 7(1), 55.Google Scholar
  29. 29.
    Garcia, S.M., Kolding, J., Rice, J., Rochet, M.J., Zhou, S., Arimoto, T., Beyer, J.E., Borges, L., Bundy, A., Dunn, D., & et al. (2012). Reconsidering the consequences of selective fisheries. Science, 335 (6072), 1045–1047.CrossRefGoogle Scholar
  30. 30.
    George, D., & Vieira, S.R.N. (2012). Australian fisheries surveys report 2011, results for selected fisheries 2008–09 to 2010–2011. Tech. rep., Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra.Google Scholar
  31. 31.
    Gourguet, S., Macher, C., Doyen, L., Thébaud, O., Bertignac, M., & Guyader, O. (2013). Managing mixed fisheries for bio-economic viability. Fisheries Research, 140, 46–62.CrossRefGoogle Scholar
  32. 32.
    Gourguet, S., Thébaud, O., Dichmont, C.M., Jennings, S., Little, L.R., Pascoe, S., Deng, R.A., & Doyen, L. (2014). Risk versus economic performance in a mixed fishery. Ecological Economics, 99, 110–120.CrossRefGoogle Scholar
  33. 33.
    Griffiths, S.P., Brewer, D.T., Heales, D.S., Milton, D.A., & Stobutzki, I.C. (2006). Validating ecological risk assessments for fisheries: assessing the impacts of turtle excluder devices on elasmobranch bycatch populations in an Australian trawl fishery. Marine and Freshwater Research, 57(4), 395–401.CrossRefGoogle Scholar
  34. 34.
    Griffiths, S. P., Kenyon, R., Bulman, C., Dowdney, J., Williams, A., Sporcic, M., & Fuller, M. (2007). Ecological Risk Assessment for the Effects of Fishing: Report for the Northern Prawn Fishery. Tech. rep., Report for the Australian Fisheries Management Authority, Canberra.Google Scholar
  35. 35.
    Hall, S.J., & Mainprize, B.M. (2005). Managing by-catch and discards: how much progress are we making and how can we do better. Fish and Fisheries, 6(2), 134–155.CrossRefGoogle Scholar
  36. 36.
    Haywood, M., Hill, B., Donovan, A., Rochester, W., Ellis, N., Welna, A., Gordon, S., Cheers, S., Forcey, K., Mcleod, I., Moeseneder, C., Smith, G., Manson, F., Wassenberg, T., Thomas, S., Kuhnert, P., Laslett, G., Buridge, C., & Thomas, S. (2005). Quantifying the effects of trawling on seabed fauna in the Northern Prawn Fishery. Final Report on FRDC Project 2002/1020. Tech. rep., CSIRO Marine and Atmospheric Research, Cleveland.Google Scholar
  37. 37.
    Hill, B.J., & Wassenberg, T.J. (2000). The probable fate of discards from prawn trawlers fishing near coral reefs: a study in the northern Great Barrier Reef, Australia. Fisheries Research, 48(3), 277–286.CrossRefGoogle Scholar
  38. 38.
    ICES (2001). Report of the Study Group on the Further Development of the Precautionary Approach to Fishery Management. Tech. rep., ICES Document CM 2001/ACFM.Google Scholar
  39. 39.
    Kelleher, K. (2005). Discards in the world’s marine fisheries: an update. FAO fisheries technical paper.Google Scholar
  40. 40.
    Kompas, T., Dichmont, C.M., Punt, A.E., Deng, A., Che, T.N., Bishop, J., Gooday, P., Ye, Y., & Zhou, S. (2010). Maximizing profits and conserving stocks in the Australian Northern Prawn Fishery. Australian Journal of Agricultural and Resource Economics, 54(3), 281–299.CrossRefGoogle Scholar
  41. 41.
    Little, L.R., Grafton, R.Q., Kompas, T., Smith, A.D.M., Punt, A.E., & Mapstone, B.D. (2011). Complementarity of no-take marine reserves and individual transferable catch quotas for managing the line fishery of the great barrier reef. Conservation Biology, 25(2), 333–340.Google Scholar
  42. 42.
    Martinet, V., Thébaud, O., & Rapaport, A. (2010). Hare or tortoise? trade-offs in recovering sustainable bioeconomic systems. Environmental Modeling and Assessment, 15(6), 503–517.CrossRefGoogle Scholar
  43. 43.
    Milton, D.A., Zhou, S., Fry, G.C., & Dell, Q. (2008). Risk assessment and mitigation for sea snakes caught in the Northern prawn Fishery. Final report on FRDC Project 2005/051. Tech. rep., CSIRO, Cleveland.Google Scholar
  44. 44.
    Mouysset, L., Doyen, L., & Jiguet, F. (2014a). From population viability analysis to coviability of farmland biodiversity and agriculture. Conservation Biology, 28(1), 187–201.CrossRefGoogle Scholar
  45. 45.
    Mouysset L, Doyen L, Pereau JC, & Jiguet F (2014b). Benefits and costs of biodiversity in agricultural public policies. European Review of Agricultural Economics. doi: 10.1093/erae/jbu005.
  46. 46.
    Pascoe, S., Vieira, S., Dichmont, C.M., & Punt, A.E. (2011). Optimal vessel size and output in the Australian northern prawn fishery: a restricted profit function approach. Australian Journal of Agricultural and Resource Economics, 55(1), 107–125.CrossRefGoogle Scholar
  47. 47.
    Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., & Torres, F. (1998). Fishing down marine food webs. Science, 279(5352), 860–863.CrossRefGoogle Scholar
  48. 48.
    Pitcher, C.R., Burridge, C.Y., Wassenberg, T.J., Hill, B.J., & Poiner, I.R. (2009). A large scale BACI experiment to test the effects of prawn trawling on seabed biota in a closed area of the Great Barrier Reef Marine Park, Australia. Fisheries Research, 99(3), 168–183.CrossRefGoogle Scholar
  49. 49.
    Punt, A.E., Deng, R.A., Dichmont, C.M., Kompas, T., Venables, W.N., Zhou, S., Pascoe, S., Hutton, T., Kenyon, R., van der Velde, T., & et al. (2010). Integrating size-structured assessment and bioeconomic management advice in Australia’s Northern Prawn Fishery. ICES Journal of Marine Science: Journal du Conseil, 67(8), 1785–1801.CrossRefGoogle Scholar
  50. 50.
    Punt, A.E., Deng, R.A., Pascoe, S., Dichmont, C.M., Zhou, S., Plagányi, É.E., Hutton, T., Venables, W. N., Kenyon, R., & van der Velde, T. (2011). Calculating optimal effort and catch trajectories for multiple species modelled using a mix of size-structured, delay-difference and biomass dynamics models. Fisheries Research, 109, 201–211.CrossRefGoogle Scholar
  51. 51.
    Raudzens, E. (2007). At sea testing of The Popeye Fishbox bycatch reduction device onboard the FV Adelaide Pearl for approval in Australia’s Northern Prawn Fishery. Tech. rep., Australian Fisheries Management Authority, Canberra, Australia.Google Scholar
  52. 52.
    Sainsbury, K.J., Punt, A.E., & Smith, A.D.M. (2000). Design of operational management strategies for achieving fishery ecosystem objectives. ICES Journal of Marine Science: Journal du Conseil, 57(3), 731–741.CrossRefGoogle Scholar
  53. 53.
    Seijo, J.C., & Caddy, J.F. (2000). Uncertainty in bio-economic reference points and indicators of marine fisheries. Marine and Freshwater Research, 51(5), 477– 483.CrossRefGoogle Scholar
  54. 54.
    Stobutzki, I.C., Miller, M.J., Jones, P., & Salini, J.P. (2001). Bycatch diversity and variation in a tropical Australian penaeid fishery; the implications for monitoring. Fisheries Research, 53(3), 283–301.CrossRefGoogle Scholar
  55. 55.
    Thébaud, O., Ellis, N., Little, L.R., Doyen, L., & Marriott, R.J. (2014). Viability trade-offs in the evaluation of strategies to manage recreational fishing in a marine park. Ecological Indicators, 46, 59–69.CrossRefGoogle Scholar
  56. 56.
    Wassenberg, T., Salini, J., Heatwole, H., & Kerr, J. (1994). Incidental capture of sea-snakes (Hydrophiidae) by prawn trawlers in the Gulf of Carpentaria, Australia. Marine and Freshwater Research, 45(3), 429–443.CrossRefGoogle Scholar
  57. 57.
    Woodhams, J., Stobutzki, I., Vieira, S., Curtotti, R., & Begg, G. A. (Eds.) (2011). Fishery status reports 2010: status of fish stocks and fisheries managed by the Australian Government. Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra.Google Scholar
  58. 58.
    Zhou, S., & Griffiths, S.P. (2008). Sustainability Assessment for Fishing Effects (SAFE): a new quantitative ecological risk assessment method and its application to elasmobranch bycatch in an Australian trawl fishery. Fisheries Research, 91(1), 56– 68.CrossRefGoogle Scholar
  59. 59.
    Zhou, S., Smith, A.D.M., Punt, A.E., Richardson, A.J., Gibbs, M., Fulton, E.A., Pascoe, S., Bulman, C., Bayliss, P., & Sainsbury, K. (2010). Ecosystem-based fisheries management requires a change to the selective fishing philosophy. Proceedings of the National Academy of Sciences, 107(21), 9485– 9489.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sophie Gourguet
    • 1
    Email author
  • Olivier Thébaud
    • 1
    • 2
  • Sarah Jennings
    • 3
    • 5
  • L. Richard Little
    • 4
    • 5
  • Catherine M. Dichmont
    • 6
  • Sean Pascoe
    • 5
    • 6
  • Roy A. Deng
    • 5
  • Luc Doyen
    • 7
  1. 1.IFREMER, UMR M101, AMURE, Unité d’Economie MaritimePlouzané CedexFrance
  2. 2.School of Economics and FinanceQueensland University of TechnologyBrisbaneAustralia
  3. 3.Tasmanian School of Business and EconomicsUniversity of TasmaniaHobartAustralia
  4. 4.CSIRO Oceans and Atmosphere FlagshipHobartAustralia
  5. 5.Centre for Marine SocioecologyUniversity of TasmaniaHobartAustralia
  6. 6.CSIRO Oceans and AtmosphereBrisbaneAustralia
  7. 7.CNRS, GREThAUniversity of BordeauxPessac CedexFrance

Personalised recommendations