Environmental Modeling & Assessment

, Volume 21, Issue 1, pp 17–30 | Cite as

Predicting Irrigated and Rainfed Rice Yield Under Projected Climate Change Scenarios in the Eastern Region of India

  • A. V. M. Subba Rao
  • Arun K. Shanker
  • V. U. M. Rao
  • V. Narsimha Rao
  • A. K. Singh
  • Pragyan Kumari
  • C. B. Singh
  • Praveen Kumar Verma
  • P. Vijaya Kumar
  • B. Bapuji Rao
  • Rajkumar Dhakar
  • M. A. Sarath Chandran
  • C. V. Naidu
  • J. L. Chaudhary
  • Ch. Srinivasa Rao
  • B. Venkateshwarlu
Article

Abstract

Numerous estimates for the coming decades project changes in precipitation resulting in more frequent droughts and floods, rise in atmospheric CO2 and temperature, extensive runoff leading to leaching of soil nutrients, and decrease in freshwater availability. Among these changes, elevated CO2 can affect crop yields in many ways. It is imperative to understand the consequences of elevated CO2 on the productivity of important agricultural crop species in order to devise adaptation and mitigation strategies to combat impending climate change. In this study, we have modeled rice phenology, growth phase, and yield with the “Decision Support System for Agrotechnology Transfer (DSSAT) CERES rice model” and arrived at predicted values of yield under different CO2 concentrations at four different locations in Eastern India out of which three locations were irrigated and one location was rainfed. The ECHAM climate scenario, Model for Interdisciplinary Research on Climate (MIROC)3.0 climate scenario, and ensemble models showed different levels of yield increase with a clear reduction in yield under rainfed rice as compared to irrigated rice. A distinct regional and cultivar difference in response of rice yield to elevated CO2 was seen in this study. Results obtained by simulation modeling at different climate change scenarios support the hypothesis that rice plant responses to elevated CO2 are through stimulation of photosynthesis. Realization of higher yields is linked with source sink dynamics and partitioning of assimilates wherein sink capacity plays an important role under elevated CO2 conditions.

Keywords

Climate change Simulation modeling Elevated CO2 Sink capacity Photosynthesis 

References

  1. 1.
    Baker, J. T., Allen, L. H., & Boote, K. J. (1992). Temperature effects on rice at elevated CO2 concentration. Journal of Experimental Botany, 43, 959–964.CrossRefGoogle Scholar
  2. 2.
    Baker, J. T., Allen, L. H., Jr., & Boote, K. J. (1996). Assessment of rice response to global climate change: CO2 and temperature. In G. W. Koch & H. A. Mooney (Eds.), Carbon dioxide and terrestrial ecosystems (pp. 256–282). San Diego: Academic.Google Scholar
  3. 3.
    Bala, B. K., & Hossain, M. A. (2013). Modeling of ecological footprint and climate change impacts on food security of the Hill Tracts of Chittagong in Bangladesh. Environmental Modeling & Assessment, 18, 39–55.CrossRefGoogle Scholar
  4. 4.
    Collier, M. A., Dix, M. R., & Hirst, A. C. (2007). CSIRO Mk3 climate system model and meeting the strict IPCC AR4 data requirements. MODSIM07 International Congress on Modelling and Simulation: land, water & environmental management: integrated systems for sustainability: Christchurch, 10–13 December 2007: Proceedings, Christchurch, N.Z.Google Scholar
  5. 5.
    Darwin, R., & Kennedy, D. (2000). Economic effects of CO2 fertilization of crops: transforming changes in yield into changes in supply. Environmental Modeling & Assessment, 5, 157–168.CrossRefGoogle Scholar
  6. 6.
    Falloon, P., & Betts, R. (2010). Climate impacts on European agriculture and water management in the context of adaptation and mitigation—the importance of an integrated approach. Science of the Total Environment, 408(23), 5667–5687.CrossRefGoogle Scholar
  7. 7.
    Hasegawa, T., Sakai, H., Tokida, T., Nakamura, H., Zhu, C., Usui, Y., & Makino, A. (2013). Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan. Functional Plant Biology, 40(2), 148–159.CrossRefGoogle Scholar
  8. 8.
    Hoogenboom, G., Wilkens, P. W., Thornton, P. K., Jones, J. W., Hunt, L. A., & Imamura, D. T. (1999). Decision support system for agrotechnology transfer 3.5. In G. Hoogenboom, P. W. Wilkens, & G. Y. Tsuji (Eds.), DSSAT version 3, vol. 4 (ISBN 1-886684-04-9) (pp. 1–36). Honolulu: University of Hawaii.Google Scholar
  9. 9.
    IPCC. (2007). Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  10. 10.
    Jones P.G., Thornton P.K. and Heinke J. (2011). Generating characteristic daily weather data using downscaled climate model data from the IPCC fourth assessment. https://hc.box.net/shared/f2gk053td8.
  11. 11.
    Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18, 235–265.CrossRefGoogle Scholar
  12. 12.
    Julia, C., & Dingkuhn, M. (2012). Variation in time of day of anthesis in rice in different climatic environments. European Journal of Agronomy, 43, 166–174.CrossRefGoogle Scholar
  13. 13.
    K-1 Model Developers, 2004. K-1 coupled model (MIROC) description. K-1 technical report 1, Hasumi, H., Emori, S. (Eds.), Center for Climate System Research, University of Tokyo, Tokyo, JapanGoogle Scholar
  14. 14.
    Kii, M., Akimoto, K., & Hayashi, A. (2013). Risk of hunger under climate change, social disparity, and agroproductivity scenarios. Environmental Modeling & Assessment, 18, 299–317.CrossRefGoogle Scholar
  15. 15.
    Kim, H. Y., Lieffering, M., Kobayashi, K., Okada, M., & Miura, S. (2003). Seasonal change in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment. Global Change Biology, 9, 826–837.CrossRefGoogle Scholar
  16. 16.
    Lenzen, M., Dey, C., Foran, B., Widmer-Cooper, A., Ohlemüller, R., Williams, M., & Wiedmann, T. (2013). Modelling interactions between economic activity, greenhouse gas emissions, biodiversity and agricultural production. Environmental Modeling & Assessment, 18, 377–416.CrossRefGoogle Scholar
  17. 17.
    Liu, H., Yang, L., Wang, Y., Huang, J., Zhu, J., Yunxia, W., Dong, G., & Liu, G. (2008). Yield formation of CO2-enriched hybrid rice cultivar Shanyou under fully open-airfield conditions. Field Crops Research, 108, 93–100.CrossRefGoogle Scholar
  18. 18.
    Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333, 616–620.CrossRefGoogle Scholar
  19. 19.
    Mavromatis, T., Boote, K. J., Jones, J. W., Irmak, A., Shinde, D., & Hoogenboom, G. (2001). Developing genetic coefficients for crop simulation models with data from crop performance trials. Crop Science, 41(1), 40–51.CrossRefGoogle Scholar
  20. 20.
    Nelson, G. C., & Shively, G. E. (2014). Modeling climate change and agriculture: an introduction to the special issue. Agricultural Economics, 45(1), 1–2.CrossRefGoogle Scholar
  21. 21.
    Penning de Vries, F., Jansen, D., ten Berge, H., & Bakema, A. (1989). Simulation of eco-physiological processes of growth in several annual crops. Wageningen: Pudoc.Google Scholar
  22. 22.
    Quiring, S. M., & Legates, D. R. (2008). Application of ceres-maize for within-season prediction of rainfed corn yields in Delaware, USA. Agricultural and Forest Meteorology, 148, 964–975.CrossRefGoogle Scholar
  23. 23.
    Ritchie, J. T. (1998). Soil water balance and plant stress. In G. Y. Tsuji, G. Hoogenboom, P. K. Thornton (Eds.), Understanding options for agricultural production. Kluwer Academic, Dordrecht, pp. 41/54.Google Scholar
  24. 24.
    Roeckner, A., Brokopf, R., Esch, M., et al. (2003). The atmospheric general circulation model ECHAM5. Part I: model description. MPI Report 349. Hamburg: Max Planck Institute for Meteorology. 127 pp.Google Scholar
  25. 25.
    Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Dümenil, L., Esch, M., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Suasen, R., Schlese, U., Schubert, S. and Windelband, M. (1992). Simulation of the present-day climate with the ECHAM4 model: impact of model physics and resolution. Max-Planck Institute for Meteorology, Report No. 93, Hamburg, Germany, 171pp.Google Scholar
  26. 26.
    Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Dümenil, L., Esch, M., Giorgetta, M., Schlese, U. and Schulzweida, U. (1996). The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck Institute for Meteorology, Report No. 218, Hamburg, Germany, 90pp.Google Scholar
  27. 27.
    Satapathy, S. S., Swain, D. K., & Herath, S. (2014). Field experiments and simulation to evaluate rice cultivar adaptation to elevated carbon dioxide and temperature in sub-tropical India. European Journal of Agronomy, 54, 21–33.CrossRefGoogle Scholar
  28. 28.
    Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., & Midgley, B. M. (2013). IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.Google Scholar
  29. 29.
    Sudharsan, D., Adinarayana, J., Reddy, D. R., Sreenivas, G., Ninomiya, S., Hirafuji, M., & Merchant, S. N. (2013). Evaluation of weather-based rice yield models in India. International Journal of Biometeorology, 57, 107–123.CrossRefGoogle Scholar
  30. 30.
    Warren, R. (2011). The role of interactions in a world implementing adaptation and mitigation solutions to climate change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 217–241.CrossRefGoogle Scholar
  31. 31.
    Wilby, R. L., Troni, J., Biot, Y., Tedd, L., Hewitson, B. C., Smith, D. M., & Sutton, R. T. (2009). A review of climate risk information for adaptation and development planning. International Journal of Climatology, 29, 1193–1215.CrossRefGoogle Scholar
  32. 32.
    Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O’Donnell, J., & Rowe, C. M. (1985). Statistics for the evaluation of model performance. Journal of Geophysical Research, 90(C5), 8995–9005.CrossRefGoogle Scholar
  33. 33.
    Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63, 1309–1313.CrossRefGoogle Scholar
  34. 34.
    Yang, L., Liu, H., Wang, Y., Zhu, J., Huang, J., Liu, G., Dong, G., & Wang, Y. (2009). Impact of elevated CO2 concentration on inter-sub specific hybrid rice cultivar Liangyoupeijiu under fully open-air field conditions. Field Crops Research, 112, 7–15.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. V. M. Subba Rao
    • 2
  • Arun K. Shanker
    • 1
  • V. U. M. Rao
    • 2
  • V. Narsimha Rao
    • 2
  • A. K. Singh
    • 3
  • Pragyan Kumari
    • 4
  • C. B. Singh
    • 5
  • Praveen Kumar Verma
    • 6
  • P. Vijaya Kumar
    • 2
  • B. Bapuji Rao
    • 2
  • Rajkumar Dhakar
    • 2
  • M. A. Sarath Chandran
    • 7
  • C. V. Naidu
    • 8
  • J. L. Chaudhary
    • 6
  • Ch. Srinivasa Rao
    • 7
  • B. Venkateshwarlu
    • 9
  1. 1.Division of Crop SciencesCentral Research Institute for Dryland Agriculture (CRIDA)HyderabadIndia
  2. 2.All India Coordinated Research Project on AgrometeorologyCentral Research Institute for Dryland Agriculture (CRIDA)HyderabadIndia
  3. 3.Department of AgrometeorologyN.D. University of Agriculture and TechnologyFaizabadIndia
  4. 4.Department of Agricultural PhysicsBirsa Agricultural UniversityRanchiIndia
  5. 5.Department of AgronomyC.S. Azad University of Agriculture and TechnologyKanpurIndia
  6. 6.Department of Agro Meteorology, College of AgricultureIndira Gandhi Krishi Vishwavidyalaya (IGKV)RaipurIndia
  7. 7.Central Research Institute for Dryland Agriculture (CRIDA)HyderabadIndia
  8. 8.Andhra UniversityVishakapatnamIndia
  9. 9.Vasantrao Naik Marathwada Krishi Vidyapeeth Parbhani (VNMKV)ParbhaniIndia

Personalised recommendations