Skip to main content

Advertisement

Log in

Cellular Automata Modelling of Fluvial Evolution: Real and Parametric Numerical Results Comparison Along River Pellice (NW Italy)

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The past two decades have seen significant improvements in the study of river morphology, in particular with regard to the analysis of the processes governing fluvial evolution resulting from the erosion and transport of sediments. Important results have been achieved thanks to the evolution of both instrumental and computational tools. Within the former framework, new technologies have allowed a more detailed representation of terrain (digital terrain model (DTM) obtained by light detection and ranging (LiDAR) survey), while, within the latter, the increase in the calculation speed of the latest platforms and the development of new mathematical and numerical algorithms have enabled the simulation of a much more complex phenomena. This paper discusses the application of a cellular automaton model (CAESAR) on a river reach. Simulated and measured data are compared through statistical approaches. The method is applied to a wandering stretch of River Pellice in the Italian north-western Alps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Leopold, L. B. (1973). River channel change with time: an example. Bulletin of Geological Society of America, 84, 1845–1860.

    Article  Google Scholar 

  2. Gregory, K.J. (1977). River channel changes. John Wiley and Sons 448 pp.

  3. Schumm, S.A. (1977). The river system. John Wiley and Sons England 338 pp.

  4. Reid, I., Bathrust, J. C., Carling, P. A., Walling, D. E., & Webb, B. W. (1997). Sediment erosion transport and deposition. In C. R. Thorne, R. D. Hey, & M. D. Newson (Eds.), Applied fluvial geomorphology for river engineering and management (pp. 95–135). England: Wiley.

    Google Scholar 

  5. Kochel, C. R. (1988). Geomorphic impact of large floods: review and new perspectives on magnitude and frequency. In V. R. Baker, C. R. Kochel, & P. C. Patton (Eds.), Flood geomorphology (pp. 169–187). England: Wiley.

    Google Scholar 

  6. Coulthard, T. J., & Van de Wiel, M. (2007). Quantifying fluvial non linearity and finding self organized criticality? Insights from simulations of river basin evolution. Geomorphology, 91, 216–235.

    Article  Google Scholar 

  7. Gregory, K. J. (2006). The human role in changing river channels. Geomorphology, 79, 172–191.

    Article  Google Scholar 

  8. Hey, R. D. (1997). River engineering and management in the 21st century. In C. R. Thorne, R. D. Hey, & M. D. Newson (Eds.), Applied fluvial geomorphology for river engineering and management (pp. 3–11). England: Wiley.

    Google Scholar 

  9. Surian, N., & Rinaldi, M. (2003). Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology, 50, 307–326.

    Article  Google Scholar 

  10. Hooke, J. M. (2006). Human impacts on fluvial system in the Mediterranean region. Geomorphology, 79, 311–335.

    Article  Google Scholar 

  11. Carling, P. A. (1992). In-stream hydraulics and sediment transport. In P. Calow & G. E. Petts (Eds.), The river handbook (volume 1) (pp. 101–125). Germany: Blackwell.

    Google Scholar 

  12. Lollino, G., Giordan, D., Baldo, M., Allasia, P., & Pellegrini, F. (2008). L’uso dei modelli digitali del terreno come strumento per lo studio dell’evoluzione morfologica dei corsi d’acqua: proposte metodologiche e primi risultati. Il Quaternario Italian Journal of Quaternary Sciences, 21(1B), 331–342.

    Google Scholar 

  13. Turitto, O., Baldo, M., Audisio, C., & Lollino, G. (2010). A LiDAR application to assess long-term bed-level changes in a cobble-bed river: the case of the Orco River (North-Western Italy). Geografia Fisica e Dinamica Quaternaria, 33(1), 61–76.

    Google Scholar 

  14. Charlton, M. A., Large, A. R. G., & Fuller, I. C. (2003). Application of airborne LiDAR in river environments: the River Coquet Northumberland UK. Earth Surface Processes and Landforms, 28(3), 299–306. doi:10.1002/esp.482.

    Article  Google Scholar 

  15. Meyer-Peter, E. & Muller, R. (1948). Formulas for bed-load transport. Proc Int Association of Hydraulic Research Third Annual Conference Stockolm Sweden, pp. 39-64.

  16. Einstein, H. A. (1950). The bed-load function of sediment transportation in open channel flows. US Department of Agriculture Soil Conservation Service Technical Bulletin, 1026, 71.

    Google Scholar 

  17. Ackers, P., & White, W. R. (1973). Sediment transport: new approach and analysis. Journal of Hydraulic Engineering Division – ASCE, 99, 2041–2060.

    Google Scholar 

  18. Yang, C. T. (1973). Incipient motion and sediment transport. Journal of Hydraulic Engineering Division – ASCE, 99, 1679–1704.

    Google Scholar 

  19. Parker, G., Klingeman, P. C., & McLean, D. G. (1982). Bedload and size distribution in pavel gravel-bed streams. Journal of Hydraulic Engineering Division – ASCE, 108, 544–571.

    Google Scholar 

  20. Wilcock, P. R., & Crowe, J. C. (2003). Surface-based transport model for mixed-size sediment. Journal of Hydraulic Engineering Division – ASCE, 129(2), 120–128.

    Article  Google Scholar 

  21. Di Silvio, G. (1992). Modelling sediment transport under different hydrological and morphological circumstances. In P. Billi, R. D. Hey, C. R. Thorne, & P. Tacconi (Eds.), Dynamics of gravel-bed rivers (pp. 363–371). England: Wiley.

    Google Scholar 

  22. Pickup, G. (1977). Simulation modelling of river channel erosion. In K. J. Gregory (Ed.), River channel changes (pp. 47–60). England: Wiley.

    Google Scholar 

  23. Chow, V. T. (1959). Open channel hydraulics. New York: McGraw Hill.

    Google Scholar 

  24. Zolezzi, G., & Seminara, G. (2001). Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeepening. Journal of Fluid Mechanics, 438, 183–211.

    Article  Google Scholar 

  25. Seminara, G., Zolezzi, G., Tubino, M., & Zardi, D. (2001). Downstream and upstream influence in river meandering. Part 2. Planimetric development. Journal of Fluid Mechanics, 438, 213–230.

    Article  Google Scholar 

  26. Repetto, R., Tubino, M., & Paola, C. (2002). Planimetric instability of channels with variable width. Journal of Fluid Mechanics, 457, 79–109.

    Article  Google Scholar 

  27. Pan, C. H., Dai, S. Q., & Chen, S. M. (2006). Numerical simulation for 2D Shallow water equations by using Godunov-type scheme with unstructured mesh. Journal of Hydrodynamic, Ser B, 18(4), 475–480.

    Article  Google Scholar 

  28. Seminara, G. (2006). Meanders. Journal of Fluid Mechanics, 554, 271–297.

    Article  Google Scholar 

  29. Ruther, N., & Olsen, N. R. B. (2007). Modelling free-forming meander evolution in a laboratory channel using three-dimensional computational fluid dynamics. Geomorphology, 89, 308–319.

    Article  Google Scholar 

  30. Shen, Y., & Diplas, P. (2008). Application of two- and three-dimensional computational fluid dynamics models to complex ecological stream flows. Journal of Hydrology, 348, 195–214.

    Article  Google Scholar 

  31. Monaghan, J. J. (2005). Smoothed particle hydrodynamics. Reports on Progress in Physics, 68, 1703–1759. doi:10.1088/0034-4885/68/8/R01.

    Article  Google Scholar 

  32. Nicholas, A. P. (2005). Cellular modelling in fluvial geomorphology. Earth Surface Processes and Landforms, 30, 645–649.

    Article  Google Scholar 

  33. Wolfram, S. (1983). Statistical mechanics of cellular automata. Review of Modern Physics, 55, 601–644.

    Article  Google Scholar 

  34. Murray, A. B., & Paola, C. (1994). A cellular model of braided rivers. Nature, 371, 54–57.

    Article  Google Scholar 

  35. Coulthard, T. J., Macklin, M. G., & Kirkby, M. J. (2002). A cellular model of Holocene upland river basin and alluvial fan formation. Earth Surface Processes and Landforms, 27, 269–288.

    Article  Google Scholar 

  36. Murray, A. B., & Paola, C. (2003). Modelling the effect of vegetation on channel pattern in bedload rivers. Earth Surface Processes and Landforms, 28, 131–143.

    Article  Google Scholar 

  37. Thomas, R., Nicholas, A. P., & Quine, T. A. (2007). Cellular modelling as a tool for interpreting historic braided river evolution. Geomorphology, 90, 302–317.

    Article  Google Scholar 

  38. Ziliani, L., & Surian, N. (2012). Evolutionary trajectory of channel morphology and controlling factors in a large gravel-bed river. Geomorphology, 173–174, 104–117.

    Article  Google Scholar 

  39. Coulthard, T. J., & Van De Wiel, M. (2006). A cellular model of river meandering. Earth Surface Processes and Landforms, 31(1), 123–132.

    Article  Google Scholar 

  40. Sun, T., Paola, C., Parker, G., & Meakin, P. (2002). Fluvial fan deltas: linking channel process with large-scale morphodynamics. Water Resources Research, 38(8), 1–10. doi:10.1029/2001WR000284.

    Article  Google Scholar 

  41. Nicholas, A. P., & Quine, T. A. (2007). Crossing the divide: representation of channels and processes in reduced-complexity river models at reach and landscape scales. Geomorphology, 90, 318–339.

    Article  Google Scholar 

  42. De Boer, D. H. (2001). Self-organization in fluvial landscapes: sediment dynamics as an emergent property. Computers & Geosciences, 27, 995–1003.

    Article  Google Scholar 

  43. Hodge, R., Richards, K., & Brasington, J. (2007). A physically-based bedload transport model developed for 3-D reach-scale cellular modelling. Geomorphology, 90, 244–262.

    Article  Google Scholar 

  44. Luo, W. (2001). LANDSAP: a coupled surface and subsurface cellular automata model for landform simulation. Computers & Geosciences, 27, 363–367.

    Article  Google Scholar 

  45. Crave, A., & Davy, P. (2001). A stochastic ‘precipiton’ model for simulating erosion/sedimentation dynamics. Computers & Geosciences, 27, 815–827.

    Article  Google Scholar 

  46. Van de Wiel, M., Coulthard, T. J., Macklin, M. J., & Lewin, J. (2007). Embedding reach-scale fluvial dynamics within the CAESAR cellular automaton landscape evolution model. Geomorphology, 90, 283–301.

    Article  Google Scholar 

  47. Coulthard, T. J., Kirkby, M. J., & Macklin, M. G. (2000). Modelling geomorphic response to environmental change in an upland catchment. Hydrological Processes, 14, 2031–2045.

    Article  Google Scholar 

  48. Audisio, C. (2013). Analisi geomorfologica e modellazione delle variazioni morfologiche lungo i corsi d’acqua. Casi di studio nell’Italia settentrionale. Unpublished PhD thesis, University “G. d’Annunzio” of Chieti-Pescara, 246 pp.

  49. Regione Piemonte (2007). Piano di Tutela delle Acque. Monografia del Bacino del Torrente Pellice 100 pp.

  50. Pasculli, A., Sciarra, N., 2006. A probabilistic approach to determine the local erosion of a watery debris flow. 11th International Congress for Mathematical Geology: Quantitative Geology from Multiple Sources, IAMG 2006; Liege; Belgium. ISBN: 978-296006440-7.

  51. Pasculli, A. (2008). CFD-FEM 2D Modeling of a local water flow. Some numerical results. Italian Journal of Quaternary Science, 21(1B), 215–228.

    Google Scholar 

  52. Minatti, L., & Pasculli, A. (2010). Dam break smoothed particle hydrodynamic modeling based on Riemann solvers. WIT Transactions on Engineering Sciences, 69, 145–156. doi:10.2495/AFM100131.

    Article  Google Scholar 

  53. Minatti, L., Pasculli, A., 2011. International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, pp. 467-475. ISBN: 978-889581446-9. doi: 10.4408/IJEGE.2011-03.B-052.

  54. Pasculli, A., Minatti, L., Sciarra, N., & Paris, E. (2013). SPH modeling of fast muddy debris flow: numerical and experimental comparison of certain commonly utilized approaches. Italian Journal of Geosciences, 132(3), 350–365. doi:10.3301/IJG.2013.01.

    Article  Google Scholar 

  55. Pasculli, A., Minatti, L., Audisio, C., & Sciarra, N. (2014). Insights on the application of some current. WIT Transactions on Engineering Sciences, 82, 3–14. doi:10.2495/AFM140011.

    Article  Google Scholar 

  56. Brasington, J., & Richards, K. (2007). Reduced-complexity, physically-based geomorphological modeling for catchment and river management. Geomorphology, 90, 171–177.

    Article  Google Scholar 

  57. Coulthard, T. J., Lewin, J., & Macklin, M. G. (2005). Modelling differential catchment response to environmental change. Geomorphology, 69, 222–241.

    Article  Google Scholar 

  58. Beven, K. J., & Kirby, M. J. (1979). A physically based variable contributing-area model of catchment hydrology. Hydrological Science Bulletin, 24(1), 43–69.

    Article  Google Scholar 

  59. Naesset, E. (1997). Estimating timber volume of forest stands using airborne laser scanner data. Remote Sensing and the Environment, 61(2), 246–253.

    Article  Google Scholar 

  60. Baltsavias, E. P. (1999). A comparison between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2–3), 83–94.

    Article  Google Scholar 

  61. Lollino, G., Allasia, P., Audisio, C., Baldo, M., Giordan, D. & Godone, F. (2012). Rilievo e comprensione delle dinamiche relative al trasporto solido dei tributari del Fiume Po Relazione Finale. Internal Report CNR-IRPI 2012/19, 169 pp.

  62. Wolman, M. G. (1954). A method of sampling coarse bed material. American Geophysical Union Transactions, 35, 951–956.

    Article  Google Scholar 

  63. Saltelli, A., Chan, K., & Scott, E. M. (2000). Sensitivity analysis. England: Wiley.

    Google Scholar 

  64. Pasculli, A., Audisio, C., & Lollino, G. (2010). Application of cellular automaton model for river morphological studies: CAESAR and the Pellice River (Piedmont, Italy). Proceedings of the 85nd Congress of the Italian Geological Society, 11(1), 118–119.

    Google Scholar 

  65. Ziliani, L., Surian, N., Coulthard, T. J., & Tarantola, S. (2013). Reduced-complexity modeling of braided rivers: assessing model performance by sensitivity analysis, calibration, and validation. Journal of Geophysical Research: Earth Surface, 118, 2243–2262. doi:10.1002/jgrf.20154.

    Google Scholar 

  66. Audisio, C., Pasculli, A., Sciarra, N., 2014. Conceptual and numerical models applied on the River Pellice (North Western Italy). Engineering Geology for Society and Territory, Vol. 3, pp. 327-330. ISBN: 978-3-319-09053-5. doi: 10.1007/978-3-319-09054-2_68. Springer International Publishing Switzerland 2015.

Download references

Acknowledgments

This work was carried out as a part of a research contract between the AIPO (Agenzia Interregionale per il Po) and CNR-IRPI Torino (National Research Council—Research Institute for Geo-Hydrological Protection). The scientific manager of the project in CNR-IRPI was Giorgio Lollino, and the LiDAR survey was realized in accordance with the contract stipulations. The research is part of a PhD on river morphology evolution and modelling conducted by Chiara Audisio (tutor Prof. Antonio Pasculli).

We wish to thank Prof. Tom Coulthard, the creator of CAESAR, for his helpful suggestions on preliminary running the software and for his comments and support to the model test. Many thanks also to Luca Ziliani for his support and suggestions on performing the simulation test.

Special thanks go to Marco Baldo, Franco Godone and Elisa Damiano for their assistance in LiDAR and GPS data survey and analysis and for her support during the field survey, respectively.

We also wish to thank the editor and Ms. Lorelie Protacio for their effort and the two anonymous referees for their constructive suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Audisio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasculli, A., Audisio, C. Cellular Automata Modelling of Fluvial Evolution: Real and Parametric Numerical Results Comparison Along River Pellice (NW Italy). Environ Model Assess 20, 425–441 (2015). https://doi.org/10.1007/s10666-015-9444-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-015-9444-8

Keywords

Navigation