A Reanalysis of Long-Term Surface Air Temperature Trends in New Zealand

Abstract

Detecting trends in climate is important in assessments of global change based on regional long-term data. Equally important is the reliability of the results that are widely used as a major input for a large number of societal design and planning purposes. New Zealand provides a rare long temperature time series in the Southern Hemisphere, and it is one of the longest continuous climate series available in the Southern Hemisphere Pacific. It is therefore important that this temperature dataset meets the highest quality control standards. New Zealand’s national record for the period 1909 to 2009 is analysed and the data homogenized. Current New Zealand century-long climatology based on 1981 methods produces a trend of 0.91 °C per century. Our analysis, which uses updated measurement techniques and corrects for shelter-contaminated data, produces a trend of 0.28 °C per century.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Aguilar, E., Auer, I., Brune, M., Peterson, T. C., & Wieringa, J. (2003). Guidelines on climate metadata and homogenization. Geneva: World Meteorological Organization. WCDMP No. 53, WMD/TD No. 1186.

    Google Scholar 

  2. 2.

    Auer, I., Böhm, R., Jurkovic, A., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Brunetti, M., Nanni, T., Maugeri, M., Briffa, K., Jones, P., Efthymiadis, D., Mestre, O., Moisselin, J. M., Begert, M., Brazdil, R., Bochnicek, O., Cegnar, T., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., Szalai, S., Szentimrey, T., & Mercalli, L. (2005). A new instrumental precipitation dataset for the Greater Alpine Region for the period 1800–2002. Int J Climatol, 25, 139–166.

    Article  Google Scholar 

  3. 3.

    Begert, M., Schlegel, T., & Kirchhofer, W. (2005). Homogeneous temperature and precipitation series of Switzerland from 1864–2000. Int J Climatol, 25, 65–80.

    Article  Google Scholar 

  4. 4.

    Böhm, R., Auer, I., Brunetti, M., Maugeri, M., Nanni, T., & Schöner, W. (2001). Regional temperature variability in the European Alps 1760–1998 from homogenized instrumental time series. Int J Climatol, 21, 1779–1801.

    Article  Google Scholar 

  5. 5.

    Camuffo, D. and Jones P. (eds) (2002). Improved understanding of past climatic variability from early daily European instrumental sources. Climatic Change, 53,1–392.

  6. 6.

    Della-Marta, P., Collins, D., & Braganza, K. (2004). Updating Australia’s high-quality annual temperature dataset. Aust Meteorol Mag, 53(2), 75–93.

    Google Scholar 

  7. 7.

    Della-Marta, P. M., & Wanner, H. (2006). A method of homogenizing the extremes and mean of daily temperature measurements. J Clim, 19, 4179–4197. doi:10.1175/JCLI3855.1.

    Article  Google Scholar 

  8. 8.

    Folland, C. K., & Salinger, M. J. (1995). Surface temperature trends and variations in New Zealand and the surrounding ocean 1871–1993. Int J Climatol, 15, 1195–1218.

    Article  Google Scholar 

  9. 9.

    Hansen, J., Ruedy, R., Sato, M., Imhoff, M., Lawrence, W., Easterling, D., Peterson, T., & Karl, T. (2001). A closer look at United States and global surface temperature change. J Geophys Res, 106, 23. 947–23 963.

    Article  Google Scholar 

  10. 10.

    Hessell, J. W. D. (1980). Apparent trends of mean temperature in New Zealand since 1930. N Z J Sci, 23, 1–9.

    Google Scholar 

  11. 11.

    Livezey, R. E., Vinnikov, K. Y., Timofeyeva, M. M., Tinker, R., & anden Dool, H. M. (2007). Estimation and extrapolation of climate normals and climate trends. J Appl Meteorol Climatol, 46, 1759–1776

  12. 12.

    Manton, M. J., & Coauthors. (2001). Trend in extreme daily rain-fall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int J Climatol, 21, 269–284.

    Article  Google Scholar 

  13. 13.

    McAneney, K. J., Salinger, M. J., Porteus, A. S., & Barber, R. F. (1990). Modification of an orchard climate with increasing shelter-belt height. Agric For Meteorol, 49, 177–189.

    Article  Google Scholar 

  14. 14.

    Menne, M. J., & Williams, C. N. (2009). Homogenization of temperature series via pairwise comparisons. J Clim, 22, 1700–1717.

    Article  Google Scholar 

  15. 15.

    Neyman, J., & Pearson, E. S. (1933). The testing of statistical hypotheses in relation to probabilities a priori. Math Proc Camb Philos Soc, 29, 492–510. doi:10.1017/S030500410001152X.

    Article  Google Scholar 

  16. 16.

    Peterson, T. C., Easterling, D. R., Karl, T. R., Groisman, P., Nicholls, N., Plummer, N., Torok, S., Auer, I., Boehm, R., Gullett, D., Vincent, L., Heino, R., Tuomenvirta, H., Mestre, O., Szentimrey, T., Salinger, J., Forland, E. J., Hanssen-Bauer, I., Alexandersson, H., Jones, P., & Parker, D. (1998). Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol, 18, 1493–1517.

    Article  Google Scholar 

  17. 17.

    Rhoades, D. A., & Salinger, M. J. (1993). Adjustment of temperature and rainfall records for site changes. Int J Climatol, 13, 899–913.

    Article  Google Scholar 

  18. 18.

    Salinger, M. J. (1980). The New Zealand temperature series. Climate Monitor, 9(4), 112–118.

    Google Scholar 

  19. 19.

    Serra, Y. L., A’Hearn, P., Freitag, H. P., & McPhaden, M. J. (2001). ATLAS self-siphoning rain gauge error estimates. Journal of Atmospheric and Oceanic Technolology, 18, 1989–2002.

    Article  Google Scholar 

  20. 20.

    Torok, S. J., & Nicholls, N. (1996). A historical annual temperature data set for Australia. Aust Meteorol Mag, 45, 251–294.

    Google Scholar 

  21. 21.

    Tuomenvirta, H. (2001). Homogeneity adjustments of temperature and precipitation series? Finnish and Nordic data. Int J Climatol, 21(4), 495–506.

    Article  Google Scholar 

  22. 22.

    Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J. A., Domonkos, P., Vertacnik, G., Szentimrey, T., Stepanek, P., Zahradnicek, P., Viarre, J., Muller-Westermeier, G., Lakatos, M., Williams, C. N., Menne, M. J., Lindau, R., Rasol, D., Rustemeier, E., Kolokythas, K., Marinova, T., Andresen, L., Acquaotta, F., Fratianni, S., Cheval, S., Klancar, M., Brunetti, M., Gruber, C., Prohom, D. M., Likso, T., Esteban, P., & Brandsma, T. (2012). Benchmarking homogenization algorithms for monthly data. Clim Past, 8, 89–115.

    Article  Google Scholar 

  23. 23.

    Williams, C. N., Menne, M. J., & Thorne, P. W. (2012). Benchmarking the performance of pairwise homogenization of surface temperatures in the United States. J Geophys Res, 117, D05116. doi:10.1029/2011JD016761.

    Google Scholar 

  24. 24.

    Wijngaard, J. B., Klein Tank, A. M. G., & Können, G. P. (2003). Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol, 23, 679–692.

    Article  Google Scholar 

  25. 25.

    Mullan, A.B., Stuart, S.J., Hadfield, M.G., Smith, M.J. (2010). Report on the review of NIWA’s ‘seven-station’ temperature series. NIWA Information Series No. 78. 175 p.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. R. de Freitas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Freitas, C.R., Dedekind, M.O. & Brill, B.E. A Reanalysis of Long-Term Surface Air Temperature Trends in New Zealand. Environ Model Assess 20, 399–410 (2015). https://doi.org/10.1007/s10666-014-9429-z

Download citation

Keywords

  • Data quality control
  • Climate change
  • Temperature time series
  • New Zealand