Environmental Modeling & Assessment

, Volume 20, Issue 4, pp 399–410 | Cite as

A Reanalysis of Long-Term Surface Air Temperature Trends in New Zealand

  • C. R. de Freitas
  • M. O. Dedekind
  • B. E. Brill
Article

Abstract

Detecting trends in climate is important in assessments of global change based on regional long-term data. Equally important is the reliability of the results that are widely used as a major input for a large number of societal design and planning purposes. New Zealand provides a rare long temperature time series in the Southern Hemisphere, and it is one of the longest continuous climate series available in the Southern Hemisphere Pacific. It is therefore important that this temperature dataset meets the highest quality control standards. New Zealand’s national record for the period 1909 to 2009 is analysed and the data homogenized. Current New Zealand century-long climatology based on 1981 methods produces a trend of 0.91 °C per century. Our analysis, which uses updated measurement techniques and corrects for shelter-contaminated data, produces a trend of 0.28 °C per century.

Keywords

Data quality control Climate change Temperature time series New Zealand 

References

  1. 1.
    Aguilar, E., Auer, I., Brune, M., Peterson, T. C., & Wieringa, J. (2003). Guidelines on climate metadata and homogenization. Geneva: World Meteorological Organization. WCDMP No. 53, WMD/TD No. 1186.Google Scholar
  2. 2.
    Auer, I., Böhm, R., Jurkovic, A., Orlik, A., Potzmann, R., Schöner, W., Ungersböck, M., Brunetti, M., Nanni, T., Maugeri, M., Briffa, K., Jones, P., Efthymiadis, D., Mestre, O., Moisselin, J. M., Begert, M., Brazdil, R., Bochnicek, O., Cegnar, T., Gajic-Capka, M., Zaninovic, K., Majstorovic, Z., Szalai, S., Szentimrey, T., & Mercalli, L. (2005). A new instrumental precipitation dataset for the Greater Alpine Region for the period 1800–2002. Int J Climatol, 25, 139–166.CrossRefGoogle Scholar
  3. 3.
    Begert, M., Schlegel, T., & Kirchhofer, W. (2005). Homogeneous temperature and precipitation series of Switzerland from 1864–2000. Int J Climatol, 25, 65–80.CrossRefGoogle Scholar
  4. 4.
    Böhm, R., Auer, I., Brunetti, M., Maugeri, M., Nanni, T., & Schöner, W. (2001). Regional temperature variability in the European Alps 1760–1998 from homogenized instrumental time series. Int J Climatol, 21, 1779–1801.CrossRefGoogle Scholar
  5. 5.
    Camuffo, D. and Jones P. (eds) (2002). Improved understanding of past climatic variability from early daily European instrumental sources. Climatic Change, 53,1–392.Google Scholar
  6. 6.
    Della-Marta, P., Collins, D., & Braganza, K. (2004). Updating Australia’s high-quality annual temperature dataset. Aust Meteorol Mag, 53(2), 75–93.Google Scholar
  7. 7.
    Della-Marta, P. M., & Wanner, H. (2006). A method of homogenizing the extremes and mean of daily temperature measurements. J Clim, 19, 4179–4197. doi:10.1175/JCLI3855.1.CrossRefGoogle Scholar
  8. 8.
    Folland, C. K., & Salinger, M. J. (1995). Surface temperature trends and variations in New Zealand and the surrounding ocean 1871–1993. Int J Climatol, 15, 1195–1218.CrossRefGoogle Scholar
  9. 9.
    Hansen, J., Ruedy, R., Sato, M., Imhoff, M., Lawrence, W., Easterling, D., Peterson, T., & Karl, T. (2001). A closer look at United States and global surface temperature change. J Geophys Res, 106, 23. 947–23 963.CrossRefGoogle Scholar
  10. 10.
    Hessell, J. W. D. (1980). Apparent trends of mean temperature in New Zealand since 1930. N Z J Sci, 23, 1–9.Google Scholar
  11. 11.
    Livezey, R. E., Vinnikov, K. Y., Timofeyeva, M. M., Tinker, R., & anden Dool, H. M. (2007). Estimation and extrapolation of climate normals and climate trends. J Appl Meteorol Climatol, 46, 1759–1776Google Scholar
  12. 12.
    Manton, M. J., & Coauthors. (2001). Trend in extreme daily rain-fall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int J Climatol, 21, 269–284.CrossRefGoogle Scholar
  13. 13.
    McAneney, K. J., Salinger, M. J., Porteus, A. S., & Barber, R. F. (1990). Modification of an orchard climate with increasing shelter-belt height. Agric For Meteorol, 49, 177–189.CrossRefGoogle Scholar
  14. 14.
    Menne, M. J., & Williams, C. N. (2009). Homogenization of temperature series via pairwise comparisons. J Clim, 22, 1700–1717.CrossRefGoogle Scholar
  15. 15.
    Neyman, J., & Pearson, E. S. (1933). The testing of statistical hypotheses in relation to probabilities a priori. Math Proc Camb Philos Soc, 29, 492–510. doi:10.1017/S030500410001152X.CrossRefGoogle Scholar
  16. 16.
    Peterson, T. C., Easterling, D. R., Karl, T. R., Groisman, P., Nicholls, N., Plummer, N., Torok, S., Auer, I., Boehm, R., Gullett, D., Vincent, L., Heino, R., Tuomenvirta, H., Mestre, O., Szentimrey, T., Salinger, J., Forland, E. J., Hanssen-Bauer, I., Alexandersson, H., Jones, P., & Parker, D. (1998). Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol, 18, 1493–1517.CrossRefGoogle Scholar
  17. 17.
    Rhoades, D. A., & Salinger, M. J. (1993). Adjustment of temperature and rainfall records for site changes. Int J Climatol, 13, 899–913.CrossRefGoogle Scholar
  18. 18.
    Salinger, M. J. (1980). The New Zealand temperature series. Climate Monitor, 9(4), 112–118.Google Scholar
  19. 19.
    Serra, Y. L., A’Hearn, P., Freitag, H. P., & McPhaden, M. J. (2001). ATLAS self-siphoning rain gauge error estimates. Journal of Atmospheric and Oceanic Technolology, 18, 1989–2002.CrossRefGoogle Scholar
  20. 20.
    Torok, S. J., & Nicholls, N. (1996). A historical annual temperature data set for Australia. Aust Meteorol Mag, 45, 251–294.Google Scholar
  21. 21.
    Tuomenvirta, H. (2001). Homogeneity adjustments of temperature and precipitation series? Finnish and Nordic data. Int J Climatol, 21(4), 495–506.CrossRefGoogle Scholar
  22. 22.
    Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J. A., Domonkos, P., Vertacnik, G., Szentimrey, T., Stepanek, P., Zahradnicek, P., Viarre, J., Muller-Westermeier, G., Lakatos, M., Williams, C. N., Menne, M. J., Lindau, R., Rasol, D., Rustemeier, E., Kolokythas, K., Marinova, T., Andresen, L., Acquaotta, F., Fratianni, S., Cheval, S., Klancar, M., Brunetti, M., Gruber, C., Prohom, D. M., Likso, T., Esteban, P., & Brandsma, T. (2012). Benchmarking homogenization algorithms for monthly data. Clim Past, 8, 89–115.CrossRefGoogle Scholar
  23. 23.
    Williams, C. N., Menne, M. J., & Thorne, P. W. (2012). Benchmarking the performance of pairwise homogenization of surface temperatures in the United States. J Geophys Res, 117, D05116. doi:10.1029/2011JD016761.Google Scholar
  24. 24.
    Wijngaard, J. B., Klein Tank, A. M. G., & Können, G. P. (2003). Homogeneity of 20th century European daily temperature and precipitation series. Int J Climatol, 23, 679–692.CrossRefGoogle Scholar
  25. 25.
    Mullan, A.B., Stuart, S.J., Hadfield, M.G., Smith, M.J. (2010). Report on the review of NIWA’s ‘seven-station’ temperature series. NIWA Information Series No. 78. 175 p.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • C. R. de Freitas
    • 1
  • M. O. Dedekind
    • 2
  • B. E. Brill
    • 3
  1. 1.School of EnvironmentUniversity of AucklandAucklandNew Zealand
  2. 2.Research & Development, BCD ConsultingAucklandNew Zealand
  3. 3.PaihiaNew Zealand

Personalised recommendations