Skip to main content

Advertisement

Log in

Thermal Modelling and Experimental Validation of a Walk-in Type Solar Tunnel Dryer for Drying Fenugreek Leaves (Methi) in Indian Climate

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This paper presents the thermal modelling and experimental validation of a walk-in type solar tunnel dryer for drying of fenugreek leaves in Indian climatic conditions. The tunnel dryer is a metallic framed structure covered with a 200-μm ultraviolet stabilized plastic sheet. This dryer has a 5 × 3.75-m floor area and is 1.75 m in height. Its loading capacity of leafy vegetables is about 100 kg. The dryer works on natural convection mode, and maximum temperature attained during experiment was 58.11 °C. Fenugreek leaves were dried from moisture content of 89 % (wb) to 9 % (wb) in 17 solar hours under typical Indian climatic conditions. Experimental energy and exergy efficiency of drying chamber ranged from 2.72 to 28.01 % and 69.43 to 90.76 % respectively. The mathematical modelling was programmed in MATLAB version 2010a. The theoretical results agreed well with experiential data for drying of fenugreek leaves. Some additional parametric studies and payback period analysis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Muhlbauer, W. (1981). Solar drying of agricultural products’, in Proc. Reg. Workshop Rural Development Technology, 25–29 May, Korea Advanced Institute of Science and Technology, Seoul 415–433.

  2. Garg, H. P., & Kumar, R. (1998). Studies on semi-cylindrical solar tunnel dryers: year round collector performance. Int. J. Energ. Res., 22, 1381–1395.

    Article  CAS  Google Scholar 

  3. Sarasavadia, P. N., et al. (1999). Drying behaviour of brined onion slices. Journal of Food Engineering, 40, 219–226.

    Article  Google Scholar 

  4. Kothari, S., et al. (2009). Performance evaluation of exhaust air recirculation system of mixed mode solar dryer for drying of onion flakes. International Journal of Renewal Energy Technology, 1, 29–41.

    Article  Google Scholar 

  5. Cakmak, G., & Yıldız, C. (2011). The prediction of seedy grape drying rate using a neural network method. Computer Electronic Agriculture, 75, 132–138.

    Article  Google Scholar 

  6. Zomorodian, A., et al. (2007). Optimization and evaluation of a semi-continuous solar dryer for cereals (rice, etc.). Desalination, 209, 129–135.

    Article  CAS  Google Scholar 

  7. Hernando, E. C., et al. (2011). Development of model based sensors for the supervision of a solar dryer. Computer Electronic Agriculture, 78, 167–175.

    Article  Google Scholar 

  8. Maskan, M. F., & Gogus, F. (1998). Sorption isotherms and drying characteristics of mulberry (Morus alba). Journal of Food Engineering, 37, 437–449.

    Article  Google Scholar 

  9. Akpinar, E. K., et al. (2003). Modeling and experimental study on drying of apple slices in a convective cyclone dryer. Journal of Food Process Engineering, 26, 515–541.

    Article  Google Scholar 

  10. Henderson S. M. (1974). Progress in developing the thin layer drying equation, Trans. ASAE, 1167–1172.

  11. Verma, L. R., et al. (1985). Effects of drying air parameters on rice drying models. T. ASAE, 28, 296–301.

    Article  Google Scholar 

  12. Eldeen, Y. I. S., et al. (1980). A model for ear corn drying, Trans. ASAE, 23, 1261–1271.

    Article  Google Scholar 

  13. Diamante, L. M., & Munro, P. A. (1993). Mathematical modelling of thin layer solar drying of sweet potato slices. Solid Energy, 51, 271–276.

    Article  Google Scholar 

  14. Ozdemir, M., & Devres, Y. O. (1999). The thin layer drying characteristics of hazelnuts during roasting. Journal of Food Engineering, 42, 225–233.

    Article  Google Scholar 

  15. Midilli, A., et al. (2002). A new model for single layer drying of some vegetables. Drying Technology, 20, 1503–1513.

    Article  Google Scholar 

  16. Togrul, I. T., & Pehlivan, D. (2003). Modeling of drying kinetics of single apricot. Journal of Food Engineering, 58, 23–32.

    Article  Google Scholar 

  17. Akpinar, E. K. (2006). Mathematical modelling of thin layer drying process under open sun of some aromatic plants. Journal of Food Engineering, 77, 864–870.

    Article  Google Scholar 

  18. Akpinar, E. K., et al. (2006). Modelling of thin layer drying of parsley leaves in a convective dryer and under open sun. Journal of Food Engineering, 75, 308–315.

    Article  Google Scholar 

  19. Yaldiz, O., & Ertekin, C. (2011). Thin layer solar drying of some vegetables. Drying Technology, 19, 583–596.

    Article  Google Scholar 

  20. Garavand, A. T., Rafiee, S., Keyhani, A., et al. (2011). Mathematical modeling of thin layer drying kinetics of tomato influence of air dryer conditions. International Transactions Journal Engg. Mangt. & Application Science & Technology, 2, 147–160.

    Google Scholar 

  21. Daoud, K., & Abchiche, H. (2008). Hydrodynamic study of the granular flow in the solar dryer. Desalination, 220, 661–668.

    Article  CAS  Google Scholar 

  22. Garg, R., et al. (1998). Simulation model of the thermal performance of a natural convection-type solar tunnel dryer. International Journal of Energ Research, 22(1998), 1165–1177.

    Article  Google Scholar 

  23. Garg, H. P., & Kumar, R. (2000). Studies on semi-cylindrical solar tunnel dryers: thermal performance of collector. Applied Thermal Engineering, 20, 115–131.

    Article  Google Scholar 

  24. Bala, B. K., et al. (2003). Solar drying of pineapple using solar tunnel drier. Renew Energy, 28, 183–190.

    Article  Google Scholar 

  25. Condorı, M., & Saravia, L. (2003). Analytical model for the performance of the tunnel-type greenhouse drier. Renew Energy, 28, 467–485.

    Article  Google Scholar 

  26. Hossain, M. A., et al. (2005). Optimisation of solar tunnel drier for drying of chilli without color loss. Renew Energy, 30, 729–742.

    Article  Google Scholar 

  27. Sacilik, K., et al. (2006). Mathematical modelling of solar tunnel drying of thin layer organic tomato. Journal of Food Engineering, 73, 231–238.

    Article  Google Scholar 

  28. Janjai, S., et al. (2009). Solar drying of peeled longan using a side loading type solar tunnel dryer: experimental and simulated performance. Drying Technology, 27, 595–605.

    Article  Google Scholar 

  29. Srisittipokakun, N., et al. (2012). Solar drying of Andrographis paniculata using a parabolicshaped solar tunnel dryer. Procedia Engineering, 32, 839–846.

    Article  Google Scholar 

  30. Eltiet, S. A., et al. (2007). Drying chamber performance of V-groove forced convective solar dryer. Desalination, 209, 151–155.

    Article  Google Scholar 

  31. Schirmer, P., et al. (1996). Experimental investigation of the performance of the solar tunnel dryer for drying bananas. Renew Energy, 7, 119–129.

    Article  Google Scholar 

  32. Hossain, M. A., & Bala, B. K. (2007). Drying of hot chilli using solar tunnel drier. Solid Energy, 81, 85–92.

    Article  CAS  Google Scholar 

  33. Sevda, M. S., & Rathore, N. S. (2009). Experimental investigation of the performance of the solar tunnel dryer for drying aonla pulp. International Journal of Global Energy, 31, 183–192.

    Article  Google Scholar 

  34. Rathore, N. S., & Panwar, N. L. (2010). Experimental studies on hemi cylindrical walk-in type solar tunnel dryer for grape drying. Applied Energy, 87, 2764–2767.

    Article  Google Scholar 

  35. Rathore, N. S., & Panwar, N. L. (2011). Design and development of energy efficient solar tunnel dryer for industrial drying. Clean Technologies and Environmental Policy, 13, 125–132.

    Article  CAS  Google Scholar 

  36. Janjai, S., et al. (2011). A large-scale solar greenhouse dryer using polycarbonate cover: modeling and testing in a tropical environment of Lao People’s democratic republic. Renew Energy, 36, 1053–1062.

    Article  Google Scholar 

  37. Intawee, P., & Janjai, S. (2011). Performance evaluation of a large-scale polyethylene covered greenhouse solar dryer. International Energy Journal, 12, 39–52.

    Google Scholar 

  38. Sharma, R. D. (1986). Effect of fenugreek seeds and leaves on blood glucose and serum insulin responses in human subjects. Nutrition Research, 6, 1353–1364.

    Article  Google Scholar 

  39. Devi, B. A., et al. (2003). Supplementation of fenugreek leaves to diabetic rats, effect on carbohydrate metabolic enzymes in diabetic liver and kidney. Phytotherapy Research, 17, 1231–1233.

    Article  Google Scholar 

  40. Ekechukwu, O. V., & Norton, B. (1997). Design and measured performance of a solar chimney for natural circulation solar energy dryers. Renew Energy, 10, 81–90.

    Article  Google Scholar 

  41. Diffie, J. A., & Beckman, W. A. (1991). Solar engineering of thermal processes. New York: Wiley.

    Google Scholar 

  42. Watmuff, J. H., et al. (1977). Solar and wind induced external coefficients for solar collectors. Comples, 2, 56.

    Google Scholar 

  43. Kays, W. M., & Crawford, M. F. (1980). Convective heat and mass transfer. New York: McGraw Hill.

    Google Scholar 

  44. Weiss, A. (1977). Algorithms for the calculation of moist air properties on a hand calculator. Transactions of ASAE, 20, 1133–1136.

    Article  Google Scholar 

  45. Singh, O. K., Kaushik, S. C. (2012). Variables influencing the exergy based performance of a Steam Power Plant, Int J Green Energ (Article in press) DOI: 10.1080/15435075.2011.653847

  46. Janjai, S. (2012). A greenhouse type solar dryer for small-scale dried food industries: development and dissemination. International Journalof Energy Environment, 3, 383–398.

    CAS  Google Scholar 

  47. Dincer, I. (2000). Thermodynamic, exergy and environmental impact. Energy Source, 22, 723–732.

    Article  CAS  Google Scholar 

  48. Dincer, I., & Cengel, A. Y. (2001). Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy-International Journal, 3, 116–149.

    Article  Google Scholar 

  49. Midilli, A., & Kucuk, H. (2003). Energy and exergy analyses of solar drying process of pistachio. Energy, 28, 539–556.

    Article  Google Scholar 

  50. Bayrak, M., et al. (2003). Energy and Exergy analyses of sugar production stages. International Journal of Energy Research, 27, 989–1001.

    Article  Google Scholar 

  51. Gupta, M. K., & Kaushik, S. C. (2009). Performance evaluation of solar air heater for various artificial roughness geometry based on energy, effective and exergy efficiencies. Renew Energy, 34, 465–476.

    Article  CAS  Google Scholar 

  52. Panwar, N. L., et al. (2012). A review on energy and exergy analysis of solar dying systems. Renewable and Sustainable Energy Reviews, 16, 2812–2819.

    Article  Google Scholar 

  53. Akpinar, E. K. (2011). Drying of parsley leaves in a solar dryer and under open sun: modeling, energy and exergy aspects. Journal of Food Process Engineering, 34, 27–48.

    Article  Google Scholar 

  54. Holman, J. P. (2010). Experimental methods for engineers, Tata McGraw Hill Education Private Limited, India

Download references

Acknowledgments

Authors are thankful to Prof. Serm Janjai, Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand, for providing the base model used in present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Panwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panwar, N.L., Rathore, N.S. & Wadhawan, N. Thermal Modelling and Experimental Validation of a Walk-in Type Solar Tunnel Dryer for Drying Fenugreek Leaves (Methi) in Indian Climate. Environ Model Assess 20, 211–223 (2015). https://doi.org/10.1007/s10666-014-9427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-014-9427-1

Keyword

Navigation