Environmental Modeling & Assessment

, Volume 20, Issue 2, pp 103–115 | Cite as

REDD in the Carbon Market: A General Equilibrium Analysis

  • Francesco Bosello
  • Ramiro ParradoEmail author
  • Renato Rosa
  • Fabio Eboli


Deforestation is a major source of CO2 emissions, accounting for around 17 % of annual anthropogenic carbon release. While costs estimates of reducing deforestation vary depending on model assumptions, it is widely accepted that emissions reductions from avoided deforestation consist of a relatively low cost mitigation option. Halting deforestation is therefore not only a major ecological challenge, but a great opportunity to cost effectively reduce climate change impacts. In this paper, we analyze the impact of introducing avoided deforestation credits into the European carbon market using a multiregional Computable General Equilibrium model. Taking into account political concerns over possible “flooding” of credits from reduced emissions from deforestation and forest degradation (REDD), limits to the number of these allowances are considered. Finally, we account for both direct and indirect effects occurring on land and timber markets resulting from lower deforestation rates. We conclude that avoided deforestation notably reduces climate change policy costs—approximately by 80 % with unlimited availability of REDD credits—and may drastically reduce carbon prices. Policy makers may effectively control for this imposing limits to REDD credits use. Moreover, avoided deforestation has the additional positive effect of reducing carbon leakage of a unilateral European climate change policy. This is good news for the EU, but not necessarily for REDD regions. We show that REDD revenues are not sufficient to compensate REDD regions for a less leakage-affected and more competitive EU in international markets. In fact, REDD regions would prefer to free ride on the EU unilateral mitigation policy.


Forestry Avoided deforestation Climate change Emission trading General equilibrium modeling 

JEL Classification

D58 Q23 Q54 


  1. 1.
    IPCC (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (Eds.)]. IPCC, Geneva, Switzerland, 104 pp. (
  2. 2.
    Kindermann, G., Obersteiner, M., Sohngen, B., Sathaye, J., Andrasko, K., Rametsteiner, E., Schlamadinger, B., Wunder, S., & Beach, R. (2008). Global cost estimates of reducing carbon emissions through avoided deforestation. Proceedings of the National Academy of Sciences, 105(30), 10302–10307. doi: 10.1073/pnas.0710616105.CrossRefGoogle Scholar
  3. 3.
    Sohngen, B., & Mendelsohn, R. (2003). An optimal control model of forest carbon sequestration. American Journal of Agricultural Economics, 85(2), 448–457. doi: 10.1111/1467-8276.00133.CrossRefGoogle Scholar
  4. 4.
    Nordhaus, W., & Boyer, J. (2000). Warming the world: economic models of global warming. Cambridge, MA: MIT Press. ISBN: 9780262140713 (
  5. 5.
    Tavoni, M., Sohngen, B., & Bosetti, V. (2007). Forestry and the carbon market response to stabilize climate. Energy Policy, 35(11), 5346–5353. doi: 10.1016/j.enpol.2006.01.036.CrossRefGoogle Scholar
  6. 6.
    Bosetti, V., Lubowski, R., Golub, A., & Markandya, A. (2011). Linking reduced deforestation and a global carbon market: implications for clean energy technology and policy flexibility. Environment and Development Economics, 16, 479–505. doi: 10.1017/S1355770X10000549.CrossRefGoogle Scholar
  7. 7.
    Eliasch, J. (2008). Climate change: financing global forests, Norwich, UK: The Stationery Office, ISBN: 9780108507632. (
  8. 8.
    Anger, N., & Sathaye, J. (2008). Reducing deforestation and trading emissions: economic implications for the Post-Kyoto Carbon Market, ZEW Discussion Paper No. 08-016, Mannheim. (
  9. 9.
    Anger, N., Dixon, A., & Livengood, E. (2012). Reduced deforestation and the carbon market: the role of market regulations and future commitments. Environment and Development Economics. doi: 10.1017/S1355770X12000058.Google Scholar
  10. 10.
    Hertel, T., Rose, S., & Tol, R.S.J. (2009). Land use in computable general equilibrium models: an overview, in Thomas Hertel, Steven Rose, Richard Tol (eds.) Economic analysis of land use in global climate change policy, Routledge Explorations in Environmental Economics. (
  11. 11.
    Hertel, T., H-L Lee, Rose, S., & Sohngen, B. (2009). Modeling land-use related greenhouse gas sources and sinks and their mitigation potential in T.W. Hertel, S. Rose, R. Tol (Eds.), economic analysis of land use in global climate change policy, Routledge Explorations in Environmental Economics.Google Scholar
  12. 12.
    Rose, S., & Lee, H.L. (2009). Non-CO2 Greenhouse Gas emissions data for climate change economic analysis in Hertel T. W., Rose S. K., Tol R. S. J., (Eds.). Economic analysis of land use in global climate change policy. Routledge Explorations in Environmental Economics.Google Scholar
  13. 13.
    U.S.EPA. (2006). Global mitigation of non-CO2 greenhouse gases. United States Environmental Protection Agency, Washington DC, EPA 430-R-12-006. (
  14. 14.
    Sohngen, B. & Mendelsohn, R. (2007). A sensitivity analysis of carbon sequestration, in Schlesinger, Michael E., et al., (Eds.), Human-induced climate change. 1st ed. Cambridge: Cambridge University Press, 2007. Cambridge Books Online. Web. 06 May 2014. ( 10.1017/CBO9780511619472).
  15. 15.
    Gurgel A., Reilly J., & Paltsev, S. (2007). Potential land use implications of a global biofuels industry. Journal of Agricultural & Food Industrial Organization. Vol 5: Article 9. Special issue: Explorations in Biofuels Economics, Policy, and History. ( 10.2202/1542-0485.1202).
  16. 16.
    Thiele, R., & Wiebelt, M. (1993). Modeling deforestation in a computable general equilibrium model, Kiel Working Papers, No. 555, (
  17. 17.
    Cattaneo, A. (2001). Deforestation in the Brazilian Amazon: comparing the impacts of macroeconomic shocks, land tenure, and technological change. Land Economics, 77(2), 219–240. Scholar
  18. 18.
    Gusti, M., Havlik, P., & Oberstenier, M. (2008). Technical description of the IIASA model cluster. International Institute for Applied System Analysis (IIASA). (
  19. 19.
    Lee, H.L., Hertel, T., Rose, S., & Avetisyan, M. (2009). An integrated global land use database for CGE analysis of climate policy options, in Hertel T. W., Rose S. K., Tol R. S. J., (Eds.), Economic analysis of land use in global climate change policy. Routledge Explorations in Environmental Economics.Google Scholar
  20. 20.
    Hertel, T. W. (1997). Global trade analysis: modeling and applications. Cambridge: Cambridge University Press.Google Scholar
  21. 21.
    Dimaranan, B.V. (2006). The GTAP 6 Data Base, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University. (
  22. 22.
    Burniaux J.M., Truong, T.P. (2002). GTAP-E: an energy-environmental version of the GTAP Model. GTAP Technical Paper n.16. (
  23. 23.
    Havlik, P., Schneider, U. A., Schmid, E., Bottcher, H., Fritz, S., Skalsky, R., Aoki, K., De Cara, S., Kindermann, G., Kraxner, F., Leduc, S., McCallum, I., Mosnier, A., Sauer, T., & Obersteiner, M. (2011). Global land-use implications of first and second generation biofuel targets. Energy Policy, 39(10), 5690–5702. doi: 10.1016/j.enpol.2010.03.030.CrossRefGoogle Scholar
  24. 24.
    Kindermann, G. E., Obersteiner, M., Rametsteiner, E., & McCallum, I. (2006). Predicting the deforestation-trend under different carbon-prices. Carbon Balance and management, 1(1), 15. Scholar
  25. 25.
    UN Food and Agricultural Organization. (2006). Global forest resources assessment 2005: progress towards sustainable forest management. FAO Forestry paper 147. United Nations Food and Agricultural Organization. Rome, Italy. (
  26. 26.
    Brown, C. (2000). The global outlook for future wood supply from forest plantations, FAO working paper N°: GFPOS/WP/03 (
  27. 27.
    Bohringer, C., Fischer, C., & Rosendahl, K.E. (2010). The global effects of subglobal climate policies. The B.E. Journal of Economic Analysis & Policy 10(2). ( 10.2202/1935-1682.2583).
  28. 28.
    Lutz, C., & Meyer, B. (2009). Environmental and economic effects of post-Kyoto carbon regimes: results of simulations with the global model GINFORS. Energy Policy, 37, 1758–1766. doi: 10.1016/j.enpol.2009.01.015.CrossRefGoogle Scholar
  29. 29.
    Baker, T., Junankar, S., Pollitt, H., & Summerton, P. (2007). Carbon leakage from unilateral environmental tax reforms in Europe, 1995–2005. Energy Policy, 35, 6281–6292. doi: 10.1016/j.enpol.2007.06.021.CrossRefGoogle Scholar
  30. 30.
    Commission Staff Working Document (SEC). (2008). Document accompanying the Package of Implementation measures for the EU's objectives on climate change and renewable energy for 2020. SEC(2008) 85/3 (
  31. 31.
    Commission Staff Working Document (SEC). (2008). Document accompanying the Package of Implementation measures for the EU's objectives on climate change and renewable energy for 2020. Vol II. SEC(2008) 85. (
  32. 32.
    Bednar-Friedl, B., Schinko, T., & Steininger, K. W. (2012). The relevance of process emissions for carbon leakage: a comparison of unilateral climate policy options with and without border carbon adjustment. Energy Economics, 34(2012), S168–S180. doi: 10.1016/j.eneco.2012.08.038.CrossRefGoogle Scholar
  33. 33.
    Parrado, R., & De Cian, E. (2014). Technology spillovers embodied in international trade: intertemporal, regional and sectoral effects in a global CGE framework. Energy Economics, 41, 76–89. doi: 10.1016/j.eneco.2013.10.016.CrossRefGoogle Scholar
  34. 34.
    Eboli, F., Parrado, R., & Roson, R. (2010). Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model. Environment and Development Economics, 15(5), 515–533. doi: 10.1017/S1355770X10000252.CrossRefGoogle Scholar
  35. 35.
    UNPD (2008). World population prospects. The 2008 revision, on line material available at:
  36. 36.
    Bosetti, V., Carraro, C.,Galeotti, M., Massetti, E., & Tavoni, M. (2006). WITCH: a world induced technical change hybrid model. The Energy Journal, Special Issue. Hybrid modeling of energy-environment policies: reconciling bottom-up and top-down, 13-38. ( 10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI2-2).
  37. 37.
    Energy Information Administration. (2007). Annual Energy Outlook 2007, with projections to 2030. Report n° DOE/EIA-0383(2007),
  38. 38.
    Energy Information Administration. (2009). International Energy Outlook 2009. Report n° DOE/EIA-0484(2009),

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Francesco Bosello
    • 1
    • 2
    • 3
  • Ramiro Parrado
    • 2
    • 3
    Email author
  • Renato Rosa
    • 3
    • 4
  • Fabio Eboli
    • 2
    • 3
  1. 1.University of MilanMilanItaly
  2. 2.Euro-Mediterranean Center on Climate ChangeVeniceItaly
  3. 3.Fondazione Eni Enrico MatteiVeniceItaly
  4. 4.CENSE—Center for Environmental and Sustainability Research, Faculdade de Ciências e Tecnologia, Universidade Nova de LisboaLisbonPortugal

Personalised recommendations