Environmental Modeling & Assessment

, Volume 20, Issue 1, pp 1–16 | Cite as

A Vector Approach for Modeling Landscape Corridors and Habitat Connectivity

  • Timothy C. MatisziwEmail author
  • Mahabub Alam
  • Kathleen M. Trauth
  • Enos C. Inniss
  • Raymond D. Semlitsch
  • Steve McIntosh
  • John Horton


Landscape connectivity is an important consideration in understanding and reasoning about ecological systems. Two features within a landscape can be viewed as connected whenever a path exists between them. In many applications, the relevance of a potential path is assessed relative to the cost or resistance it presents to traversal. Typically, the least-cost paths between landscape features are used to approximate the potential for connectivity. However, traversal of a landscape between two locations may not necessarily conform to a least-cost path. Moreover, recent research has begun to cast some doubt on the how different types of landscape features may influence movement. Thus, it is important to consider the geographic bounds to movement more broadly. Continuous (i.e., raster) and discrete (i.e., vector) representations of connectivity are commonly used to model the spatial relationships among landscape features. While existing approaches can shed meaningful insights on system topology and connectivity, they are still limited in their ability to represent certain types of movement and are heavily influenced by scale of the areal units and how cost of landscape traversal is derived. In order to better address these issues, this paper proposes a new vector-based approach for delineating the geographic extent of corridors and assessing connectivity among landscape features. The developed approach is applied to evaluate habitat connectivity for salamanders to highlight the benefits of this modeling approach.


Species movement Network modeling and analysis Geographic information systems Wetlands Amphibians 



This research has been supported by a grant from the U.S. Environmental Protection Agency (EPA), Region 7. Although the research described in the article has been funded wholly or in part by the U.S. Environmental Protection Agency Region 7 through grant CD-97723401, it has not been subjected to any EPA review and therefore does not necessarily reflect the views of the Agency, and no official endorsement should be inferred.


  1. 1.
    Adriaensen, F., Chardon, J. P., De Blust, G., Swinnen, E., Villalba, S., Gulinck, H., & Matthysen, E. (2003). The application of ‘least-cost’ modelling as a functional landscape model. Landscape and Urban Planning, 64(4), 233–247.CrossRefGoogle Scholar
  2. 2.
    Amoros, C., & Bornette, G. (2002). Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology, 47, 761–776.CrossRefGoogle Scholar
  3. 3.
    Arscott, D. B., Tockner, K., & Ward, J. V. (2001). Thermal heterogeneity along a braided floodplain river (Tagliamento River, Northeastern Italy). Canadian Journal of Fisheries and Aquatic Sciences, 58(12), 2359–2373.CrossRefGoogle Scholar
  4. 4.
    Barrows, C. W., Fleming, K. D., & Allen, M. F. (2011). Identifying habitat linkages to maintain connectivity for corridor dwellers in a fragmented landscape. The Journal of Wildlife Management, 75(3), 682–690.CrossRefGoogle Scholar
  5. 5.
    Beier, P., Majka, D. R., & Newell, S. L. (2009). Uncertainty analysis of least-cost modeling for designing wildlife linkages. Ecological Applications, 19(8), 2067–2077.CrossRefGoogle Scholar
  6. 6.
    Beier, P., Spencer, W., Baldwin, R. F., & McRae, B. H. (2011). Toward best practices for developing regional connectivity maps. Conservation Biology, 25(5), 879–892.CrossRefGoogle Scholar
  7. 7.
    Berven, K. A., & Grudzien, T. A. (1990). Disperal in the wood frog (rana sylvatica): implications for genetic population structure. Evolution, 44(8), 2047–2056.CrossRefGoogle Scholar
  8. 8.
    Brost, B. M., & Beier, P. (2012). Comparing linkage designs based on land facets to linkage designs based on focal species. PLOS ONE, 7(11), e48965.CrossRefGoogle Scholar
  9. 9.
    Cabezas, A., Gonzalez-Sanchis, M., Gallardo, B., & Comin, F. A. (2011). Using continuous surface water level and temperature data to characterize hydrological connectivity in riparian wetlands. Environmental Monitoring and Assessment., 184, 485–500.CrossRefGoogle Scholar
  10. 10.
    Chetkiewicz, C.-L. B., & Boyce, M. S. (2009). Use of resource selection functions to identify conservation corridors. Journal of Applied Ecology., 46, 1036–1047.CrossRefGoogle Scholar
  11. 11.
    Church, R.L., & Murray. A.T. (2008). Business site selection, location analysis and GIS. WileyGoogle Scholar
  12. 12.
    Clean Water Act of 1972, 33 U.S.C. § 1251 et seq. (2013).Google Scholar
  13. 13.
    Compton, B. W., McGarigal, K., Cushman, S. A., & Gamble, L. R. (2007). A resistant-kernal model of connectivity for amphibians that breed in vernal pools. Conservation Biology, 21(3), 788–799.CrossRefGoogle Scholar
  14. 14.
    Cosentino, B. J., Schooley, R. L., & Phillips, C. A. (2011). Connectivity of agroecosystems: dispersal costs can vary among crops. Landscape Ecology, 26(3), 371–379.CrossRefGoogle Scholar
  15. 15.
    Cushman, S. A. (2006). Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biological Conservation, 128(2), 231–240.CrossRefGoogle Scholar
  16. 16.
    Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.CrossRefGoogle Scholar
  17. 17.
    Diaz-Ramirez, J.N., McAnally, W.H. & Martin, J.L. (2010). A review of HSPF evaluations on the southern united states and puerto rico. ASABE—21st Century Watershed Technology: Improving Water Quality and Environment, 177–184.Google Scholar
  18. 18.
    Gamble, L. R., McGarigal, K., & Compton, B. W. (2007). Fidelity and dispersal in the pond-breeding amphibian, Ambystoma opacum: Implications for spatial-temporal population dynamics and conservation. Biological Conservation, 139, 247–257.CrossRefGoogle Scholar
  19. 19.
    Gurrutxaga, M., Lozano, P. J., & del Barrio, G. (2010). GIS-based approach for incorporating the connectivity of ecological networks into regional planning. Journal for Nature Conservation, 18, 318–326.CrossRefGoogle Scholar
  20. 20.
    Hanski, I. (1999). Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos, 87, 209–219.CrossRefGoogle Scholar
  21. 21.
    Huber, D.L. (1980). Alternative methods in corridor routing. Unpublished Master Thesis, The University of Tennessee, Knoxville.Google Scholar
  22. 22.
    Huck, M., Jedrzejewski, W., Borowik, T., Milosz-Cielma, M., Schmidt, K., Jedrezejewska, B., Nowak, S., & Myslajek, R. W. (2010). Habitat suitability, corridors and dispersal barriers for large carnivores in Poland. Acta Theriologica, 55(2), 177–192.CrossRefGoogle Scholar
  23. 23.
    Kautz, R., Kawula, R., Hoctor, T., Comiskey, J., Jansen, D., Jennings, D., Kasbohm, J., Mazzotti, F., McBride, R., Richardson, L., & Root, K. (2006). How much is enough? Landscape-scale conservation for the florida panther. Biological Conservation, 130(1), 118–133.CrossRefGoogle Scholar
  24. 24.
    LaRue, M. A., & Nielsen, C. K. (2008). Modeling potential dispersal corridors for cougars in Midwestern North America using least-cost path methods. Ecological Modeling, 212, 372–381.CrossRefGoogle Scholar
  25. 25.
    Levin, S. A. (1991). The problem of pattern and scale in ecology. Ecology, 73(6), 1943–1967.CrossRefGoogle Scholar
  26. 26.
    Lookingbill, T. R., Gardner, R. H., Rerrari, J. R., & Keller, C. E. (2010). Combining a dispersal model with network theory to assess habitat connectivity. Ecological Applications., 20(2), 427–441.CrossRefGoogle Scholar
  27. 27.
    Lombard, K., & Church, R. L. (1993). The gateway shortest path problem: generating alternative routes for a corridor location problem. Geographical Systems., 1, 25–45.Google Scholar
  28. 28.
    Matisziw, T. C., & Murray, A. T. (2009). Connectivity change in habitat networks. Landscape Ecology, 24, 89–100.CrossRefGoogle Scholar
  29. 29.
    MDC. (2012). Wetland Values, Conservation Commission of Missouri (accessed 01/07/2012 2012).
  30. 30.
    McRae, B. H., Hall, S. A., Beier, P., & Theobald, D. M. (2012). Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLOS ONE, 7(12), e52604.CrossRefGoogle Scholar
  31. 31.
    Mortelliti, A., & Boitani, L. (2008). Interaction of food resources and landscape structure in determining the probability of patch use by carnivores in fragmented landscapes. Landscape Ecology, 23, 285–298.CrossRefGoogle Scholar
  32. 32.
    Openshaw, S. (1984). The modifiable areal unit problem. In Concepts and techniques in modern geography, Volume 8. Norwich: Geobooks.Google Scholar
  33. 33.
    Parks, S. A., McKelvey, K. S., & Schwartz, M. K. (2012). Effects of weighting schemes on the identification of wildlife corridors generated with least-cost methods. Conservation Biology, 27(1), 145–154.CrossRefGoogle Scholar
  34. 34.
    Pinto, N., & Keitt, T. (2009). Beyond the least-cost path: evaluating redundancy using a graph-theoretic approach. Landscape Ecology, 24, 253–266.CrossRefGoogle Scholar
  35. 35.
    Pittman, S. E., Osbourn, M. S., & Semlitsch, R. D. (2014). Movement ecology of amphibians: a missing component to understanding amphibian declines. Biological Conservation, 169, 44–53.CrossRefGoogle Scholar
  36. 36.
    Poor, E. E., Loucks, C., Jakes, A., & Urban, D. L. (2012). Comparing habitat suitability and connectivity modeling methods for conserving pronghorn migrations. PLOS ONE, 7(11), e49390.CrossRefGoogle Scholar
  37. 37.
    Pyke, C. R. (2005). Assessing suitability for conservation action: prioritizing interpond linkages for the California tiger salamander. Conservation Biology., 19(2), 492–503.CrossRefGoogle Scholar
  38. 38.
    Rapanos v. United States, (2006) 547. U. 715. Retrieved from
  39. 39.
    Rentch, J. S., Anderson, J. T., Lamont, S., Sencindiver, J., & Eli, R. (2008). Vegetation along hydrologic, edaphic, and geochemical gradients in a high-elevation poor fen in Canaan Valley, West Virginia. Wetlands Ecology and Management, 16(3), 237–253.CrossRefGoogle Scholar
  40. 40.
    Ribeiro, R., Carretero, M., Sillero, N., Alarcos, G., Ortiz-Santaliestra, M., Lizana, M., & Llorente, G. A. (2011). The pond network: can structural connectivity reflect on (amphibian) biodiversity patterns? Landscape Ecology, 26(5), 673–682.CrossRefGoogle Scholar
  41. 41.
    Ricketts, T. H. (2001). The matrix matters: effective isolation in fragmented landscapes. American Naturalist, 158(1), 87–99.CrossRefGoogle Scholar
  42. 42.
    Rouget, M., Cowling, R. M., Lombard, A. T., Knight, A. T., & Graham, I. H. K. (2006). Designing large-scale conservation corridors for pattern and process. Conservation Biology, 20, 549–561.CrossRefGoogle Scholar
  43. 43.
    Samecka-Cymerman, A., Stankiewicz, A., Kolon, K., Kempers, A. J., & Leuven, R. S. E. W. (2010). Market basket analysis: a new tool in ecology to describe chemical relations in the environment—a case study of the fern athyrium distentifolium in the Tatra National Park in Poland. Journal of Chemical Ecology, 36(9), 1029–1034.CrossRefGoogle Scholar
  44. 44.
    Sawyer, S. C., Epps, C. W., & Brashares, J. S. (2011). Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes? Journal of Applied Ecology, 48(3), 668–678.CrossRefGoogle Scholar
  45. 45.
    Semlitsch, R. D., Ecrement, S., Fuller, A., Hammer, K., Howard, J., Krager, C., Mozeley, J., Ogle, J., Shipman, N., Speier, J., Walker, M., & Walters, B. (2012). Natural and anthropogenic substrates affect movement behavior of the Southern Graycheek salamander (Plethodon metcalfi). Canadian Journal of Zoology, 90, 1128–1135.CrossRefGoogle Scholar
  46. 46.
    Semlitsch, R. D., & Bodie, J. R. (1998). Are small, isolated wetlands expendable? Conservation Biology, 12, 1129–1133.CrossRefGoogle Scholar
  47. 47.
    Semlitsch, R. D. (2008). Differentiating migration and dispersal processes for pond-breeding amphibians. Journal of Wildlife Management, 72(1), 260–267.CrossRefGoogle Scholar
  48. 48.
    Semlitsch, R. D., Ryan, T. J., Hamed, K., Chatfield, M., Drehman, B., Pekarek, N., Spath, M., & Watland, A. (2007). Salamander abundance along road edges and within abandoned logging roads in appalachian forests. Conservation Biology, 21(1), 159–167.CrossRefGoogle Scholar
  49. 49.
    Schalk, C. M., & Luhring, T. M. (2010). Vagility of aquatic salamanders: implications for wetland connectivity. Journal of Herpetology, 44(1), 104–109.CrossRefGoogle Scholar
  50. 50.
    Shulse, C. D., Semlitsch, R. D., Trauth, K. M., & Williams, A. D. (2010). Influences of design and landscape placement parameters on amphibian abundance in constructed wetlands. Wetlands, 30, 915–928.CrossRefGoogle Scholar
  51. 51.
    Smith, M. A., & Green, D. M. (2005). Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography, 28(1), 110–128.CrossRefGoogle Scholar
  52. 52.
    Snodgrass, J. W., Ackerman, J. W., Bryan, A. L., Jr., & Burger, J. (1999). Influence of hydroperiod, isolation, and heterospecifics on the distribution of aquatic salamanders (Siren and Amphiuma) among depression wetlands. Copeia, 1, 107–113.CrossRefGoogle Scholar
  53. 53.
    Todd, B. L., Matheney, M.P., Lobb, M.D. & Schrader L.H. (1994). Locust creek basin management plan.Google Scholar
  54. 54.
    Urban, D., & Keitt, T. (2001). Landscape connectivity: a graph theoretic perspective. Ecology, 82(5), 1205–1218.CrossRefGoogle Scholar
  55. 55.
    USFWS. (2012). Wetlands Mapper Documentation and Instructions Manual. (accessed 04/23/2012).
  56. 56.
    Verbeylen, G., De Bruyn, L., Adriaensen, F., & Matthysen, E. (2003). Does matrix resistance influence red squirrel (Sciurus vulgaris L. 1758) distribution in an urban landscape? Landscape Ecology, 18, 791–805.CrossRefGoogle Scholar
  57. 57.
    Whiles, M. R., Lips, K. R., Pringle, C. M., Kilham, S. S., Bixby, R. J., Brenes, R., Connelly, S., Colon-Gaud, J. C., Hunte-Brown, M., Huryn, A. D., Montgomery, C., & Peterson, S. (2006). The effects of amphibian population declines on the structure and function of neotropical stream ecosystems. Frontiers in Ecology and the Environment, 4(1), 27–34.CrossRefGoogle Scholar
  58. 58.
    Wien, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3, 385–397.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Timothy C. Matisziw
    • 1
    • 2
    • 3
    Email author
  • Mahabub Alam
    • 6
  • Kathleen M. Trauth
    • 1
  • Enos C. Inniss
    • 1
  • Raymond D. Semlitsch
    • 4
  • Steve McIntosh
    • 5
  • John Horton
    • 5
  1. 1.Department of Civil & Environmental EngineeringUniversity of MissouriColumbiaUSA
  2. 2.Department of GeographyUniversity of MissouriColumbiaUSA
  3. 3.Informatics InstituteUniversity of MissouriColumbiaUSA
  4. 4.Division of Biological SciencesUniversity of MissouriColumbiaUSA
  5. 5.Missouri Department of Natural ResourcesWater Resources CenterJefferson CityUSA
  6. 6.Department of Civil and Environmental EngineeringOregon State UniversityCorvallisUSA

Personalised recommendations