Skip to main content
Log in

STUMOD—a Tool for Predicting Fate and Transport of Nitrogen in Soil Treatment Units

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

A typical onsite wastewater treatment system consists of a septic tank and a soil treatment unit to treat wastewater before it is discharged through the vadose zone to an aquifer. A tool was developed for the purpose of predicting the fate and transport of nitrogen in soil treatment units (STUMOD or Soil Treatment Unit Model). STUMOD calculates nitrogen species concentrations and the fraction of total nitrogen reaching the aquifer or a specified soil depth. Input data include parameters for hydraulics and nutrient transport and transformation. An analytical solution is used to calculate the profile of pressure based on Darcy’s equation and the relationships between suction head, unsaturated hydraulic conductivity, and soil moisture. Chemical transport is based on simplification of the advection–dispersion equation. STUMOD is relatively simple to use but accounts for important processes such as ammonium sorption, nitrification, and denitrification. STUMOD accounts for the effect of soil moisture content (a surrogate for redox conditions) on nitrification and denitrification reactions. The model has provisions to handle the influence of temperature and organic carbon content on nitrogen transformation. Model outputs, generated based on input parameters obtained from extensive literature review, were compared to a numerical model and data from laboratory tests and field sites. Both measured data and STUMOD outputs show a relatively higher removal in clayey soils compared to sandy soils. Consistent with literature data for most soils, STUMOD predicted ammonium conversion to nitrate within the first foot below the trench infiltrative surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdul-Talib, S., Hvitved-Jacobsen, T., Vollertsen, J., & Ujang, Z. (2002). Half saturation constants for nitrate and nitrite by in-sewer anoxic transformations of wastewater organic matter. Water Science and Technology, 46(9), 185–192.

    CAS  Google Scholar 

  2. Andreoli, A., Bartilucci, N., Forgione, R., & Reynolds, R. (1979). Nitrogen removal in a subsurface disposal system. Journal of the American Water Pollution Control Federation, 51(4), 841–854.

    CAS  Google Scholar 

  3. Bakhsh, A., Hatfield, J. L., Kanwar, R. S., Ma, L., & Ahuja, L. R. (2004). Simulating nitrate drainage losses from a Walnut Creek watershed field. Journal of Environmental Quality, 33, 114–123.

    Article  CAS  Google Scholar 

  4. Beach, D. N., & McCray, J. E. (2003). Numerical modeling of unsaturated flow in wastewater soil absorption systems. Ground Water Monitoring and Remediation, 23(2), 64–72.

    Article  Google Scholar 

  5. Beal, C. D., Rassam, D. W., Gardner, E. A., Kirchhof, G., & Menzies, N. W. (2008). Influence of hydraulic loading and effluent flux on surface surcharging in soil absorption systems. Journal of Hydrologic Engineering, 13(8), 681–692.

    Article  Google Scholar 

  6. Bollman, A., & Conrad, R. (1998). Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Global Change Biology, 4(4), 387–396.

    Article  Google Scholar 

  7. Brown, R. B. (2003). Soils and septic systems. SL-118, a series of the Soil and Water Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. (http://ufdc.ufl.edu/IR00003105/00001). Accessed 29 Nov 2013.

  8. Bumgarner, J. R., & McCray, J. E. (2007). Estimating biozone hydraulic conductivity in wastewater soil-infiltration systems using inverse numerical modeling. Water Research, 41(11), 2349–2360.

    Article  CAS  Google Scholar 

  9. Cogger, C. G., Hajjar, L. M., Moe, C. L., & Sobsey, M. D. (1988). Septic system performances on a coastal barrier island. Journal of Environmental Quality, 17(3), 401–407.

    Article  CAS  Google Scholar 

  10. Colbourn, P. (1993). Limits to denitrification in two pasture soils in a temperate maritime climate. Agriculture, Ecosystems and Environment, 43, 49–68.

    Article  CAS  Google Scholar 

  11. Conn, K. E., Siegrist, R. L., Barber, L. B., & Myers, M. T. (2009). Fate of Trace Organic compounds during vadose zone soil treatment in an onsite wastewater system. Environmental Toxicology and Chemistry, 29(2), 285–293.

    Article  Google Scholar 

  12. Crites, R. C., & Technobanoglous, G. (1998). Small and decentralized wastewater management systems. New York: McGraw-Hill.

    Google Scholar 

  13. Fang, C., & Moncrieff, J. B. (2005). The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant and Soil, 268, 243–253.

    Article  CAS  Google Scholar 

  14. Frimpter, M. H., Donohue, J. J., IV, & Rapacz, M. V. (1990). A mass-balance model for predicting nitrate in ground water. New England Water Works Association, 104(4), 219–232.

    CAS  Google Scholar 

  15. Gaines, A. G. (1986). Final report for the town of Oak Bluffs—Lagoon Pond study: an assessment of environmental issues and observations on the estuarine system. Prepared by Woods Hole Oceanographic Institution, Woods Hole, MA.

  16. Gardner, W. R. (1958). Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Science, 85(4), 228.

    Article  Google Scholar 

  17. Geza, M., Murray, K. E., & McCray, J. E. (2010). Watershed scale impacts of nitrogen from onsite wastewater systems: parameter sensitivity and model calibration. Journal of Environmental Engineering, 136(9), 926–938.

    Article  CAS  Google Scholar 

  18. Geza, M., Lowe, K. S., Huntzinger, D. N., & McCray, J. E. (2013). New conceptual model for soil treatment units: formation of multiple hydraulic zones during unsaturated wastewater infiltration. Journal of Environmental Quality, 42(4), 1196–1204. doi:10.2134/jeq2012.0441.

    Article  CAS  Google Scholar 

  19. Grant, R. F. (1991). A technique for estimating denitrification rates at different soil temperatures, water contents and nitrate concentrations. Soil Science, 152, 41–52.

    Article  CAS  Google Scholar 

  20. Grant, R. F. (1995). Mathematical modelling of nitrous oxide evolution during nitrification. Soil Biology and Biochemistry, 27(9), 1117–1125.

    Article  CAS  Google Scholar 

  21. Grant, R. F. (2001). In M. J. Shaffer, L. Ma, & S. Hansen (Eds.), A review of the Canadian ecosystem model ECOSYS (pp. 173–263). Boca Raton: Lewis.

    Google Scholar 

  22. Grundmann, G. L., & Rolston, D. E. (1987). A water function approximation of degree of anaerobiosis associated with denitrification. Soil Science, 144, 437–441.

    Article  CAS  Google Scholar 

  23. Hantzsche, N. N., & Finnemore, E. J. (1992). Predicting ground-water nitrate-nitrogen impacts. Ground Water, 30(4), 490–499.

    Article  CAS  Google Scholar 

  24. Hemond, H. F., & Fechner-Levy, E. J. (2000). Chemical fate and transport in the environment (2nd ed.). New York: Academic.

    Google Scholar 

  25. Huyakorn, P. S., Mercer, J. W., & Ward, D. S. (1985). Finite element matrix and mass balance computational schemes for transport in variably saturated porous media. Water Resources Research, 21, 346–358.

    Article  Google Scholar 

  26. Jabro, J. D., Stout, W. L., Fales, S. L., & Fox, R. H. (2001). SOIL-SOILN simulations of water drainage and nitrate nitrogen transport from soil core lysimeters. Journal of Environmental Quality, 30, 584–589.

    Article  CAS  Google Scholar 

  27. Jenkins, M. C., & Kemp, W. M. (1984). The coupling of nitrification and denitrification in two estuarine sediments. Limnology Oceanography, 29(3), 609–619.

    Article  CAS  Google Scholar 

  28. Katz, B. G., Crandall, C. A., Metz, P. A., McBride, S., & Berndt, M. P. (2007). Chemical characteristics, water sources and pathways, and age distribution of ground water in the contributing recharge area of a public-supply well near Tampa, Florida. U.S. Geological Survey Scientific Investigations Report 2007–5139, 83 p.

  29. Lindbo, D. L., Lynn, J., Neal, K., Young, G., & Amoozegar, A. (2007). Applying soil morphology to long term acceptance rate determination. In K. Mancl (ed.) Eleventh individual and small community sewage systems conference proceedings. Warwick, RI. 20–24 October, 2007. ASABE Publication 701P1107. St Joseph, MI

  30. Lotse, E. G., Jabro, J. D., Simmons, K. E., & Baker, D. E. (1992). Simulation of nitrogen dynamics and leaching from arable soils. Journal of Contaminant Hydrology, 10, 183–196.

    Article  CAS  Google Scholar 

  31. Lowe, K., Tucholke, M. B., Tomaras, J., Conn, K. E., Hoppe, C., Drewes, J., McCray, J. E., & Munakata-Marr, J. (2009). Influent constituent characteristics of the modern waste stream from single sources. Final Project Report Project No. 04-DEC-1. Prepared for Water Environment Research Foundation. Alexandria, VA by Colorado School of Mines, Golden CO.

  32. Ma, L., Shaffer, M. J., & Ahuja, L. R. (2001). Application of RZWQM for soil nitrogen management. In M. J. Shaffer, L. Ma, & S. Hansen (Eds.), Modeling carbon and nitrogen dynamics for soil management (pp. 265–301). Boca Raton: Lewis.

    Google Scholar 

  33. Maag, M., & Vinther, F. P. (1996). Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Applied Soil Ecology, 4(1), 5–14.

    Article  Google Scholar 

  34. Machefert, S. E., & Dise, N. B. (2004). Hydrological controls on denitrification in riparian ecosystems. Hydrology and Earth System Sciences, 8(4), 686–694.

    Article  CAS  Google Scholar 

  35. Mahli, S. S., McGill, W. B., & Nyborg, N. (1990). Nitrate losses in soils: effects of temperature, moisture and substrate concentration. Soil Biology & Biochemistry, 22, 733–737.

    Article  Google Scholar 

  36. Mccarty, G. W., & Bremner, J. M. (1995). Factors affecting the availability of organic carbon for denitrification of nitrate in subsoils. Biology and Fertility of Soils, 15, 132–136.

    Article  Google Scholar 

  37. McCray, J. E., Kirkland, S. L., Siegrist, R. L., & Thyne, G. D. (2005). Model parameters for simulating fate and transport of on-site wastewater nutrients. Ground Water, 43(4), 628–639.

    Article  CAS  Google Scholar 

  38. Moreels, E., De Neve, S., Hofman, G., & Van Meirvenne, M. (2003). Simulating nitrate leaching in bare fallow soils: a model comparison. Nutrient Cycling in Agroecosystems, 67(2), 137–144.

    Article  CAS  Google Scholar 

  39. Otis, R. J. (2007). Estimates of nitrogen loadings to groundwater from onsite wastewater treatment systems in the Wekiva study area. In Briggs, G.R., Roeder E. and Ursin E. (Eds.) Nitrogen impact on onsite sewage treatment and disposal systems in the Wekiva Study Area. Florida Department of Health, Bureau of Onsite Sewage Systems.

  40. Pradhan, S., Hoover, M. T., Devine, H. A., Arnold, J. G., & Di Luzio, M. (2005). Quantifying nitrogen exports from on-site systems to surface waters within small watersheds using the SWAT model. Proceedings of the Proceeding of the Third Conference on Watershed Management to Meet Water Quality Standards and Emerging TMDL, in Atlanta, GA. ASAE.387-396.

  41. Radcliffe, D. E., & West, L. T. (2007). Modeling long term acceptance rates for OWMSs. Proceedings of the Eleventh National Symposium on Individual and Small Community Sewage Systems, October 20–24, 2007, in Warwick, RI. American Society of Agricultural and Biological Engineers, St. Joseph, MI.

  42. Radcliffe, D. E., & West, L. T. (2009). Design hydraulic loading rates for onsite wastewater systems. Vadose Zone Journal, 8(1), 1–11.

    Article  Google Scholar 

  43. Riley, W. J., & Matson, A. (2000). NLOSS: a mechanistic model of denitrified N2O and N2 evolution from soil. Soil Science, 165, 237–249.

    Article  CAS  Google Scholar 

  44. Ryan, M., et al. (1998). Relative denitrification rates in surface and subsurface mineral soil layers. Irish Journal of Agircultural and Food Research, 37, 141–157.

    Google Scholar 

  45. Schaap, M. G., Leij, F. J., & van Genuchten, M. T. (2001). Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251, 163–176.

    Article  Google Scholar 

  46. Schjonning, P., Thomsen, I. K., Moldrop, P., & Christensen, B. T. (2003). Linking soil microbial activity to water- and air-phase contents and diffusivities. Soil Science Society of America Journal, 67, 156–165.

    Article  CAS  Google Scholar 

  47. Sheibley, R. W., Jackman, A. P., Duff, J. H., & Triska, F. J. (2003). Numerical modeling of coupled nitrification-denitrification in sediment perfusion cores from the hyporheic zone of Shingobee River, MN. Advances in Water Resources, 26, 977–987.

    Article  CAS  Google Scholar 

  48. Simunek, J., Sejna, M., & Van Genuchten, M. T. (1999). The HYDRUS-2D software package for simulating two-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 2.0. Agricultural Research Service, US Department of Agriculture, Riverside, California.

  49. Siegrist, R. L. (2007). Engineering of a soil treatment unit as a unit operation in an onsite wastewater system. In K. Mancl (ed.) Eleventh individual and small community sewage systems conference proceedings. ASABE Publication 701P1107. St. Joseph, MI.

  50. Skaggs, R. W. (1978). A water management model for shallow water table soils. Report #134. Prepared by Water Resources Research Institute of the University of North Carolina.

  51. Tackett, K. N., Lowe, K. S., Siegrist, R. L., & Van Cuyk, S. (2004). Vadose zone treatment during effluent reclamation as affected by infiltrative surface architecture and hydraulic loading rate. Proceedings of the Tenth National Symposium on Individual and Small Community Sewage Systems, Sacramento, CA. American Society of Agricultural Engineers. 701P 0104:655–667.

  52. Tartakovsky, D. M., Guadagnini, L. A., & Tartakovsky, A. M. (2003). Unsaturated flow in heterogeneous soils with spatially distributed uncertain hydraulic parameters. Journal of Hydrology, 275(3–4), 182–193.

    Article  Google Scholar 

  53. Tucholke, M. B., McCray, J. E., Thyne, G. D., & Waskom, R. M. (2007). Variability in denitrification rates: literature review and analysis. Proceedings of the National Onsite Wastewater Recycling Association 16th Annual Technical Education & Exposition Conference, in Baltimore, MD. NOWRA, Santa Cruz, CA.

  54. U.S. Environmental Protection Agency (2002a). Onsite wastewater treatment systems manual. Cincinnati, OH, U.S. Environmental Protection Agency.

  55. Van Cuyk, S., Siegrist, R., Logan, A., Masson, S., Fischer, E., & Figueroa, L. (2001). Hydraulic and purification behaviors and their interactions during wastewater treatment in soil infiltration systems. Water Research, 35(4), 953–964.

    Article  Google Scholar 

  56. van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892–898.

    Article  Google Scholar 

  57. Vinten, A. J. A., Castle, K., & Arah, J. R. M. (1996). Field evaluation of models of denitrification linked to nitrate leaching for aggregated soil. European Journal of Soil Science, 47, 305–317.

    Article  CAS  Google Scholar 

  58. Wang, X., Youssef, M. A., Skaggs, R. W., Atwood, J. D., & Frankenberger, J. R. (2005). Sensitivity analyses of the nitrogen simulation model, DRAINMOD-N II. Transactions of the American Society of Agricultural Engineers, 48(6), 2205–2212.

    Article  CAS  Google Scholar 

  59. Warrick, A. W., & Yeh, T.-C. J. (1990). One-dimensional steady vertical flow in layered soils. Advanced Water Resources, 13(4), 207–210.

    Article  Google Scholar 

  60. Youssef, M. A., Skaggs, R. W., Chescheir, G. M., & Gilliam, J. W. (2005). The nitrogen simulation model, DRAINMOD-N II. Transactions of the American Society of Agricultural Engineers, 48(2), 611–626.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported with funding provided by the WERF (DEC1R06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengistu Geza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geza, M., Lowe, K.S. & McCray, J.E. STUMOD—a Tool for Predicting Fate and Transport of Nitrogen in Soil Treatment Units. Environ Model Assess 19, 243–256 (2014). https://doi.org/10.1007/s10666-013-9392-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-013-9392-0

Keywords

Navigation