Skip to main content

Advertisement

Log in

Evaluation of Numerical Modeling Methods for the Management of Produced Water Discharges in the Coastal Region with a Canadian Case Study

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This study aims at evaluating two numerical methods for 3D simulation of marine pollutant dispersion problems: the random walk particle tracking (RWPT) method and an explicit second-order finite difference method (FDM) for assessing produced water discharges from offshore oil platform. Test cases in a steady flow field were used to evaluate the efficiency and accuracy of simulating pollutant concentration profiles obtained using both the FDM and RWPT method in comparison with an analytical solution. Additionally, a field study was conducted to simulate the lead concentration distribution of produced water discharged from an oil platform off Canada’s east coast, based on the Princeton Ocean Model modeling the ocean flow in the study area with field verifications. Results indicate that, with proper configuration of grid resolution and particle resolution, both FDM and RWPT method can provide accurate results with reasonable computational costs for complex field cases. Particularly, the satisfactory 3D simulations of marine pollutant dispersion in the far field by both FDM and RWPT numerical methods enable effective assessment and management of offshore waste discharges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbaspour, M., Javid, A. H., Moghimi, P., & Kayhan, K. (2005). Modeling of thermal pollution in coastal area and its economical and environmental assessment. International Journal of Environmental Science and Technology, 2, 13–26.

    Article  Google Scholar 

  2. Ahmad, Z., Kothyari, U. C., & Ranga Raju, K. G. (1999). Finite difference scheme for longitudinal dispersion in open channels. Journal of Hydraulic Research, 37, 389–406.

    Article  Google Scholar 

  3. Anfossi, D., Tinarelli, G., Castelli, S. T., Nibart, M., Olry, C., & Commanay, J. (2010). A new Lagrangian particle model for the simulation of dense gas dispersion. Atmospheric Environment, 44, 753–762.

    Article  CAS  Google Scholar 

  4. Argall, R., Sanders, B. F., & Poon, Y. K. (2003). Random-walk suspended sediment transport and settling model. In M. L. Spaulding (Ed.), Proceedings of the Eighth International Conference: Estuarine and Coastal Modeling (pp. 713–730). Monterey: American Society of Civil Engineers (ASCE).

    Google Scholar 

  5. Asselin, R. (1972). Frequency filters for time integrations. Monthly Weather Review, 100, 487–490.

    Article  Google Scholar 

  6. Baetsle, L. H. (1969). Migration of radionuclides in porous media. In A. M. F. Duhamel (Ed.), Progress in Nuclear Energy, Series XII, Health Physics (pp. 707–730). Elmsford: Pergamon Press.

    Google Scholar 

  7. Bagtzoglou, A. C., Tompson, A. F. B., & Dougherty, D. E. (1992). Project functions for particle-grid methods. Numerical Methods for Partial Differential Equations, 8, 325–340.

    Article  Google Scholar 

  8. Banton, O., Porel, G., & Delay, F. (1997). Coupling of the time domain random walk method with the finite fragment method to simulate flow and transport in 1-D heterogeneous media. Journal of Hydrology (Amsterdam, Neth.), 201, 49–61.

    Article  Google Scholar 

  9. Berloff, P. S., & McWilliams, J. C. (2002). Material transport in oceanic gyres. Part II: hierarchy of stochastic models. Journal of Physical Oceanography, 32, 797–830.

    Article  Google Scholar 

  10. CAPP. (2001). Offshore produced water waste management. Technical Report 2001–0030, Calgary, AB, Halifax, NS, St. John’s, NL: Canadian Association of Petroleum Producers (CAPP).

  11. Chen, Z., Zhao, L., Lee, K., & Hannath, C. (2007). Modeling and assessment of the produced water discharges from offshore petroleum platforms. Water Quality Research Journal of Canada, 42, 303–310.

    CAS  Google Scholar 

  12. Chung, T. J. (2002). Computational fluid dynamics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  13. Courant, R., Friedrichs, K., & Lewy, H. (1967). On the partial difference equations of mathematical physics. IBM Journal, English translation of the 1928 German original, 215–234.

  14. Date, A. W. (2005). Introduction to computational fluid dynamics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  15. Domenico, P. A., & Robbins, G. A. (1985). A new method of contaminant plume analysis. Ground Water, 23, 476–485.

    Article  CAS  Google Scholar 

  16. Du, S. (2001). A heuristic Lagrangian stochastic particle model of relative diffusion: model formulation and preliminary results. Atmospheric Environment, 35, 1597–1607.

    Article  CAS  Google Scholar 

  17. Durran, D. R. (1991). The third-order Adams-Bashforth method: an attractive alternative to leapfrog time differencing. Monthly Weather Review, 119, 702–720.

    Article  Google Scholar 

  18. Glass, J., & Rodi, W. (1982). A higher order numerical scheme for scalar transport. Computer Methods in Applied Mechanics and Engineering, 31, 337–358.

    Article  Google Scholar 

  19. Guyonnet, D., & Neville, C. (2004). Dimensionless analysis of two analytical solutions for 3-D solute transport in groundwater. Journal of Contaminant Hydrology, 75, 141–153.

    Article  CAS  Google Scholar 

  20. Hao, X., & Varshney, A. (2006). Geometry-guided computation of 3D electrostatics for large molecular datasets. Computer Aided Geometric Design, 23, 545–557.

    Article  Google Scholar 

  21. Hunt, B. (1978). Dispersive sources in uniform groundwater flow. Journal of the Hydraulics Division American Society of Civil Engineers, 104, 75–85.

    Google Scholar 

  22. Hunter, J. R., Craig, P. D., & Phillips, H. E. (1993). On the use of random walk models with spatially variable diffusivity. Journal of Computational Physics, 106, 366–376.

    Google Scholar 

  23. Hurley, P., & Physick, W. (1993). Lagrangian particle modeling of buoyant point sources plume rise and entrapment under convective conditions. Atmospheric Environment, 27A, 1579–1584.

    CAS  Google Scholar 

  24. Israelsson, P. H., Kim, Y. D., & Adams, E. E. (2006). A comparison of three Lagrangian approaches for extending near field mixing calculations. Environmental Modelling & Software, 21, 1631–1649.

    Article  Google Scholar 

  25. JWSL. (2007). Hibernia production phase environmental effects monitorng program—year six (2007) volume I—interpretation. Jacques Whitford Stantec Limited, St. John’s NL, pages 63

  26. Kowalick, Z., & Murty, T. S. (1993). Numerical modeling of ocean dynamics. Advanced series on ocean engineering—volume 5. Singapore: World Scientific.

    Book  Google Scholar 

  27. Lee, K., Azetsu-Scott, K., Cobanli, S. E., Dalziel, J., Niven, S., Wohlgeschaffen, G., & Yeats, P. (2005). Overview of potential impacts from produced water discharges in Atlantic Canada. In S. L. Armsworthy, P. J. Cranford, & K. Lee (Eds.), Offshore oil and gas environmental effects monitoring approaches and technologies (pp. 319–342). Ohio: Battelle Press.

    Google Scholar 

  28. Lewis, R. E. (1997). Dispersion in estuaries and coastal waters. Chichester: Wiley.

    Google Scholar 

  29. Li, S., & Hodgins, D. O. (2004). A dynamically coupled outfall plume-circulation model for effluent dispersion in Burrard Inlet, British Columbia. Journal of Environmental Engineering and Science, 3, 433–449.

    Article  Google Scholar 

  30. Luhar, A. K., & Britter, R. E. (1992). Random-walk modeling of buoyant-plume dispersion in the convective boundary layer. Atmospheric Environment, 26A, 1283–1298.

    CAS  Google Scholar 

  31. Martin, J. L., & McCutcheon, S. C. (1998). Hydrodynamics and transport for water quality modeling. New York: Lewis Publishers.

    Google Scholar 

  32. Mellor, G.L. (2004). Users guide for a three-dimensional, primitive equation, numerical ocean model. Princeton, NJ: Princeton University. http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/FTPbackup/usersguide0604.pdf. Accessed 22 Mar 2012.

  33. Mellor, G. L., Ezer, T., & Oey, L.-Y. (1994). The pressure gradient conundrum of sigma coordinate ocean models. Journal of Atmospheric and Oceanic Technology, 11, 1126–1134.

    Article  Google Scholar 

  34. Mellor, G. L., Oey, L.-Y., & Ezer, T. (1998). Sigma coordinate pressure gradient errors and the seamount problem. Journal of Atmospheric and Oceanic Technology, 15, 1122–1131.

    Article  Google Scholar 

  35. Moeller, J. C., & Adams, E. E. (1993). Comparison of Eulerian–Lagrangian, random walk and hybrid methods of modeling pollutant transport. In M. L. Spaulding, A. Blumberg, R. Cheng, & C. Swanson (Eds.), Proceedings of the 3rd International Conference: Estuarine and Coastal Modeling (pp. 609–623). Oak Brook: American Society of Civil Engineers (ASCE).

    Google Scholar 

  36. Nakano, M., & Povinec, P. P. (2003). Oceanic general circulation model for the assessment of the distribution of 137Cs in the world ocean. Deep-Sea Research Part II, 50, 2803–2816.

    Article  CAS  Google Scholar 

  37. PAL Environmental Services. (2005). Hibernia annual environmental data summary. Report Prepared for Exxon Mobil, Newfoundland, CA.

  38. Periáñez, R. (2006). Modeling surface radioactive spill dispersion in the Alboran Sea. Journal of Environmental Radioactivity, 90, 48–67.

    Article  Google Scholar 

  39. Periáñez, R., & Elliott, A. J. (2002). A particle-tracking method for simulating the dispersion of non-conservative radionuclides in coastal waters. Journal of Environmental Radioactivity, 58, 13–33.

    Article  Google Scholar 

  40. Rao, K. R., Nehrbass, J., & Lee, R. (1999). Discretization errors in finite methods: issues and possible solutions. Computer Methods in Applied Mechanics and Engineering, 169, 219–236.

    Article  Google Scholar 

  41. Riddle, A. M., Beling, E. M., & Murray-Smith, R. J. (2001). Modeling the uncertainties in predicting produced water concentrations in the North Sea. Environmental Modelling & Software, 16, 659–668.

    Article  Google Scholar 

  42. Ross, O. N., & Sharples, J. (2004). Recipe for 1-D Lagrangian particle tracking models in space-varying diffusivity. Limnology and Oceanography: Methods, 2, 289–302.

    Google Scholar 

  43. Salamon, P., Fernandez-Garcia, D., & Gomez-Hernandez, J. J. (2006). A review and numerical assessment of the random walk particle tracking method. Journal of Contaminant Hydrology, 87, 277–305.

    Article  CAS  Google Scholar 

  44. Srinivasan, V., Clement, T. P., & Lee, K. K. (2007). Domenico solution—is it valid? Ground Water, 45, 136–146.

    Article  CAS  Google Scholar 

  45. Suh, S. W. (1987). A hybrid approach to particle tracking and Eulerian–Lagrangian models in the simulation of coastal dispersion. Environmental Modelling & Software, 21, 234–242.

    Article  Google Scholar 

  46. Thomson, D. J. (1987). Criteria for the selection of stochastic models of particle trajectories in turbulent flows. Journal of Fluid Mechanics, 180, 529–556.

    Article  CAS  Google Scholar 

  47. Thomson, D. J. (1990). A stochastic model for the motion of particle pairs in isotropic high-Reynolds-number turbulence, and its application to the problem of concentration variance. Journal of Fluid Mechanics, 210, 113–153.

    Article  Google Scholar 

  48. Visser, A. W. (1997). Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Marine Ecology Progress Series, 158, 275–281.

    Article  CAS  Google Scholar 

  49. Wendt, J. F. (2009). Computational fluid dynamics: an introduction. Berlin: Springer.

    Book  Google Scholar 

  50. West, M., & Kueper, B.H. (2004). Natural attenuation of solute plumes in bedded fractured rock. Proceedings of USEPA/NGWA Fractured Rock Conference, Portland, Maine, National Ground Water Association, pp. 388–401.

  51. West, M. R., Kueper, B. H., & Ungs, M. J. (2007). On the use and error of approximation in the Domenico (1987) solution. Ground Water, 45, 126–135.

    Article  CAS  Google Scholar 

  52. Westerink, J. J., & Shea, D. (1989). Consistent higher degree Petrov-Galerkin methods for the solution of the transient convection–diffusion equation. International Journal for Numerical Methods in Engineering, 28, 1077–1101.

    Article  Google Scholar 

  53. Zhao, L., Chen, Z., & Lee, K. (2011). Modelling the dispersion of wastewater discharges from offshore outfalls: a review. Environmental Reviews, 19, 107–120.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded in part by the Natural Science and Engineering Research Council Canada (NSERC). The authors wish to thank the anonymous reviewers especially the reviewer 2 for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Chen, Z. & Lee, K. Evaluation of Numerical Modeling Methods for the Management of Produced Water Discharges in the Coastal Region with a Canadian Case Study. Environ Model Assess 19, 57–70 (2014). https://doi.org/10.1007/s10666-013-9383-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-013-9383-1

Keywords

Navigation