Skip to main content

Analysing Seasonal Differences between a Soil Water Balance Model and in Situ Soil Moisture Measurementsat Nine Locations Across Europe


We compared soil moisture from the soil water balance model for European Water Accounting (swbEWA) with in situ observations from nine locations in three European climatic zones (continental, Mediterranean and maritime temperate), for different periods between 2003 and 2011. Despite the simplicity of the swbEWA model, the patterns of temporal changes in soil moisture content are well represented at all locations. Annual averages show that the model overestimates the soil moisture content, and that overestimations are the smallest when measurements are obtained from more than one depth. These results suggest that the relationship between simulated and observed soil moisture also depends on the number of measurements and the depth over which they are taken. In the continental climate, where snow cover and frozen soil influence soil moisture, we observe higher root mean square error values in winter months. However, in the Mediterranean and maritime temperate climates, we do not observe clear common seasonal patterns in the soil moisture profile, which makes it difficult to relate the model’s accuracy to climate. With the percentage of correctness and probability of detection measures, we tested the model performance in simulating dry versus non-dry events. The percentage of the correctly classified dry and non-dry events is higher than 84 % at all locations, whereas the probability to detect dry events is significantly lower, exceeding 50 % at only four out of nine stations. The frequency distribution of consecutive days with dry soil (CDDS) confirms the model performance: higher number of short dry periods (with less than 20 days of soil moisture near wilting point) are reproduced and observed in continental climates, whereas long dry periods (longer than 50 days) are noted in the Mediterranean climate. Overall, the statistical measures suggest that the model produces the highest accuracy in summer months at the stations in continental climates, whereas in the Mediterranean climate, the accuracy is slightly higher in the colder seasons.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Albergel, C., Rudiger, C., Carrer, D., Calvet, J., Fritz, N., Naemi, V. (2009). An evaluation of ASCAT surface soil moisture products with in-situ observations in south France. Hydrology and Earth System Sciences, 13, 115–124.

    CAS  Article  Google Scholar 

  2. Albergel, C., de Rosnay, P., Gruhier, C., Munoz-Sabater, J., Hasenauer, S., Isakese, L., Kerr, Y., Wagner, W. (2012). Evaluation of remotely sensed and modelled soil moisture products using global ground based in-situ observations. Remote Sensing of Environment, 118, 215–226.

    Article  Google Scholar 

  3. Allen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998). Crop evapotranspiration—guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Rome: Food and Agriculture Organization.

  4. Balsamo, G., Dutra, E., Boussetta, S., Beljaars, A., Viterbo, P., van den Hurk, B. (2009). Recent advances in land surface modelling at the ECMWF. In ECMWF/GLASS workshop on land surface modelling. 9–12 November 2010, Reading.

  5. Barnes, F. (2011). Estimating crop water requirement in Arizona and New Mexico. Master’s thesis, Department of Hydrology and Water Resources.

  6. Bissell, C.C., & Chapman, D.A. (1992). Digital signal transmission. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  7. Bossard, M., Feranec, J., Otahel, J. (2000). ClC2000 technical guidelines. Technical report. Copenhagen: European Environment Agency.

  8. Brier, G.W., & Allen, R.A. (1951). Verification of weather forecasts. In Compendium of meteorology. Boston: American Meteorological Society.

  9. de Rosnay, P., Drusch, M., Boone, A., Balsamo, G., Decharme, B., Harris, P., Kerr, Y., Pellarin, T., Polcher, J., Wigneron, J.-P. (2009). The AMA land surface model intercomparison experiment coupled to the community microwave emission model: ALMIP-MEM. Journal of Geophysical Research, 114. doi:10.1029/2008JD010724.

  10. DeLannoy, G.J.M., Hauser, P.R., Verhoest, N.E.C., Pauwels, V.R.N., Gish, T.J. (2007). Upscaling of point soil moisture measurements to field averages at the OPE3 test site. Journal of Hydrology, 343, 1–11.

    Article  Google Scholar 

  11. Dorigo, W.A., Wagner, W., Hohensinn, R., Hahna, S., Paulik, C., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., Jackson, T. (2011). The international soil moisture network: a data hosting facility for global in situ soil moisture measurements. Hydrology and Earth System Sciences Discussions, 8, 1609–1663.

    Article  Google Scholar 

  12. EEA (2007). ClC2006 technical guidelines. Technical report no. EEA17/2007. Copenhagen: European Environment Agency.

  13. ERA (2009). CORINE land-cover Ireland. Technical report. Ireland: Environmental Protection Agency.

  14. ESA (2012). SMOS maps Europe. February 2012.

  15. FLUXNET (2013). FLUXNET: a network of regional networks. Technical report, FLUXNET.

  16. Franz, T.E., Zreda, M., Rosolem, R., Ferre, T.P.A. (2013). A universal calibration function for determination of soil moisture with cosmic-ray neutrons. Hydrology and Earth System Sciences, 17, 453–460.

    Article  Google Scholar 

  17. Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., Sitch, S. (2003). Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology, 286, 249–270.

    Article  Google Scholar 

  18. Gherboudi, I., Magagi, R., Berg, A.A., Toth, B. (2011). Soil moisture retrieval over agricultural fields from multi-polarized and multiangular Radarsat-2 SAR data. Remote Sensing of Environment, 115, 33–43.

    Article  Google Scholar 

  19. Gijsman, A.J., Jagtap, S.S., Jones, J.W. (2002). Wading through a swamp of complete confusion, How to choose a method for estimating soil water retention parameters for crop models. European Journal of Agronomy, 18, 75–105.

    Article  Google Scholar 

  20. Haylock, M.R., Hofstra, N., Klein-Tank, A.M.G., Klok, E.J., Jones, P.D., New, M. (2008). A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research, 113, D20119. doi:10.1029/2008JD10201.

    Article  Google Scholar 

  21. Hofstra, N., New, M., Sweeney, C.M. (2010). Influence of interpolation and station network density on the distribution and extreme trends of climate variables in gridded data. Climate Dynamics, 35, 841–858.

    Article  Google Scholar 

  22. JRC-EC. (2010). European soil data centre. Technical report. Brussels: EC-JRC.

  23. Kampe, T.U., Johnston, B.R., Kuester, M., Keller, M. (2010). NEON: the first continental-scale ecological observatory with airborne remote sensing of vegetation canopy biochemistry and structure. Journal of Remote Sensing, 4, 1–24.

    Google Scholar 

  24. Kendall, M.G., & Stuart, A. (1973). The advanced theory of statistics, Vol. 2. London: Griffin.

    Google Scholar 

  25. Kerr, Y.H., Waldteufel, P., Delwart, J.P., Capot, S., Boutin, J. (2010). The SMOS mission: new tool for monitoring key elements of the global water cycle. Proceedings of the IEEE.

  26. Laguardia, G., & Niemeyer, S. (2008). On the comparison between the LISFLOOD modeled and the ERS/SCAT derived soil moisture estimates. Hydrology and Earth System Sciences, 12, 1–13.

    Article  Google Scholar 

  27. Leuning, R., Cleugh, H.A., Zegelin, S.J., Hughes, D. (2005). Carbon and water fluxes over a temperate eucalyptus forest and a tropical wet/dry savannah in Australia: measurements and comparison with Modis remote sensing estimates. Agricultural and Forest Meteorology, 129, 151–173.

    Article  Google Scholar 

  28. Micale, F., & Genovese, G. (2003). Methodology of the MARS crop yield forecasting system. European report 21291 EN/1-4. Brussels: EC-Joint Research Centre.

  29. Mittelbach, H., Lehner, I., Seneviratne, S.I. (2012). Comparison of four soil moisture sensor types under field conditions in Switzerland. Journal of Hydrology, 430–431, 39–49.

    Article  Google Scholar 

  30. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885–900.

    Article  Google Scholar 

  31. Nash, J.E., & Sutcliffe, J.V. (1970). River flow forecasting through conceptual models. Part I. A discussion of principles. Journal of Hydrology, 10, 282–290.

    Article  Google Scholar 

  32. Noilhan, J., & Mahfouf, J.-F. (1996). The ISBA land surface parameterization scheme. Global and Planetary Change, 13, 145–159.

    Article  Google Scholar 

  33. Peixoto, J.P., & Oort, A.H. (1992). Physics of climate. Berlin: Springer.

    Google Scholar 

  34. Penman, H.L. (1948). Natural evapotranspiration from open water, bare soil, and grass. Proceedings of the Royal Meteorological Society.

  35. Raes, D. (2002). BUDGET: a soil water and salt balance model. Reference manual, version 5.0. Leuven: Catholic University of Leuven.

  36. Rahman, M.M., Moran, M.S., Thoma, D.P., Bryant, R., Holifield, A., Collins, C.D., Jackson, T., Orr, B.J., Tischler, M. (2008). Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data. Remote Sensing of Environment, 112, 391–402.

    Article  Google Scholar 

  37. Rocha, J., Perdigão, A., Melo, R., Henriques, C. (2010). Managing water in agriculture through remote sensing applications. In: R. Reuter (Ed.) EARSeL symposium on remote sensing for science, education, and natural and cultural heritage.

  38. Sandholt, I., Rasmussen, K., Andersen, J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79, 213–224.

    Article  Google Scholar 

  39. Saxton, K.E., & Rawls, W.J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 70, 1569–1578.

    CAS  Article  Google Scholar 

  40. Schmugge, T.J. (1983). Remote sensing of soil moisture: recent advances. IEEE Trans-actions on Geoscience and Remote Sensing, GE21, 145–146.

    Google Scholar 

  41. Schumann, G., Lunt, D.J., Valdes, P.J., de Jeu, R.A.M., Scipal, K., Bates, P.D. (2009). Assessment of soil moisture fields from imperfect climate models with uncertain satellite observations. Hydrology and Earth System Sciences Discussion, 13, 1545–1553.

    Google Scholar 

  42. Scipal, K. (2002). Global soil moisture retrieval from ERS Scatterometer data. PhD thesis. Austria: Vienna University of Technology.

  43. Sheikh, V., Visser, S., Stroosnijder, L. (2009). A simple model to predict soil moisture: bridging event and continuous hydrological (BEACH) modelling. Environmental Modelling Software, 240(4), 542–556.

    Article  Google Scholar 

  44. Shuttleworth, J., Rosolem, R., Zreda, M., Franz, T.E. (2013). The cosmic-ray soil moisture interaction code (COSMIC) for use in data assimilation. Hydrology and Earth System Sciences Discussions, 10, 1097–1125.

    Article  Google Scholar 

  45. Shuttleworth, W.J., & Wallace, J.S. (2009). Calculating the water requirements of irrigated crops in Australia using the Matt-Shuttleworth approach. Transactions of the ASABE, 52, 1895–1906.

    Article  Google Scholar 

  46. Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, O.J., Lewis, S., Lucht, W., Sykes, M.T., Thonicke, K., Venevsky, S. (2003). Evaluation ecosystem dynamics, plant geography and terestrial carbon cycle in the LPJ dynamic global vegetation model. Global Change, 9, 161–185.

    Article  Google Scholar 

  47. Stjernholm, M. (2009). Corine land cover 2006. Final report on interpretation of CLC2006 in Denmark. Technical report. Denmark: NERI.

  48. Sung, C.T.B., & Iba, J. (2010). Accuracy of the Saxton-Rawls method for estimating the soil water characteristics for mineral soils of malaysia. Journal of Tropical Agriculture Science, 33, 297–302.

    Google Scholar 

  49. Thielen, J., Bartholmes, J., Ramos, M.-H., de Roo, A. (2008). The European Flood Alert System - part 1 concepts and developments. Hydrology and Earth System Sciences Discussions, 5, 257–287.

    Article  Google Scholar 

  50. UN-DESA (1992). Agenda21-comprehensive plan of action to be taken globally, nationally and locally by organizations of the united nations system, governments, and major groups in every area in which human impacts on the environment Technical report. New York: UN Department of Economic and Social Affairs.

  51. UN-DESA (2012). System of environmental-economic accounting for water, Technical report. New York: The Department of Economic and Social Affairs of the United Nations Secretariat.

  52. van der Knijff, J., Younis, J., de Roo, A. (2009). LISFLOOD: A GIS-based distributed model for river basin scale water balance and floods simulation. JRC scientific and technical report. Brussels: EC-Joint Research Centre.

  53. van Doninck, J., Peters, J., Lievens, H., De Baets, B., Verhoest, N.E.C. (2012). Accounting for seasonality in a soil moisture change detection algorithm for ASAR wide swath time series. Hydrology and Earth System Sciences, 10(16), 773–786.

    Article  Google Scholar 

  54. van Engelen, A., Klein Tank, A., van der Schrier, G., Klok, L. (2008). European climate assessment & dataset (ECA&D). Technical report. The Netherlands: KNMI.

  55. Wagner, W., Lemoine, G., Rott, H. (1999). A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sensing of Environment, 70, 191–207.

    Article  Google Scholar 

  56. Wagner, W., Bloschl, G., Pampaloni, P., Calvet, J. (2007). Operational readiness of microwave remote sensing of soil moisture for hydrological applications. Nordic Hydrology, 38, 1–20.

    Article  Google Scholar 

  57. Wagner, W., Pathe, C., Doubkova, M., Sabel, D., Bartsch, A., Hasenauer, S., Blischl, G., Scipal, M., Martinez Fernandez, M., Luw, A. (2008). Temporal stability of soil moisture and radar backscatter observed by the advanced synthetic aperture radar (ASAR). Sensors, 8, 1174–1197.

    Article  Google Scholar 

  58. Wallace, J.S. (1995). Calculating evapotranspiration: resistance to factors. Agricultural and Forest Meteorology, 73, 353–366.

    Article  Google Scholar 

  59. Western, A.W., & Bloschl, G. (1999). On the spatial scaling of soil moisture. Journal of Hydrology, 217, 203–224.

    Article  Google Scholar 

  60. Wilks, D.S. (1995). Statistical methods in the atmospheric science. San Diego: Academic.

    Google Scholar 

  61. Zhang, Y., Wei, H., Nearing, M.A. (2011). Effects of antecedent soil moisture on runoff modeling in small semiarid watersheds of southeastern Arizona. Hydrology and Earth System Sciences, 150, 3171–3179.

    Article  Google Scholar 

  62. Zreda, M., Shuttleworth, W.J., Zeng, X., Zweck, C., Desilets, D., Franz, T., Rosolem, R. (2012). COSMOS: the cosmic-ray soil moisture observing system. Hydrology and Earth System Science, 16, 4079–4099.

    Article  Google Scholar 

Download references


The authors are truly grateful to the reviewers for their comments that contributed to the substantial improvement of this manuscript. We would also like to thank the Slovenian Environment Agency for providing us with soil moisture data.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Blaž Kurnik.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kurnik, B., Louwagie, G., Erhard, M. et al. Analysing Seasonal Differences between a Soil Water Balance Model and in Situ Soil Moisture Measurementsat Nine Locations Across Europe. Environ Model Assess 19, 19–34 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Soil moisture
  • Soil water balance
  • In situ
  • Modelling
  • Europe
  • Climate