Skip to main content
Log in

Estimation of Water Demand in Iran Based on SARIMA Models

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The generation of synthetic, residential water demands that can reproduce essential statistical features of historical residential water consumption is essential for planning, design, and operation of water resource systems. Most residential water consumption series are seasonal and nonstationary. We employ the seasonal autoregressive integrated moving average (SARIMA) model. We fit this model to monthly residential water consumption in Iran from May 2001 to March 2010. We find that a three-parameter log-logistic distribution fits the model residuals adequately. We forecast values for 1 year ahead using the fitted SARIMA model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Robson, A., & Reed, D. (1999). Statistical procedures for flood frequency estimation. In: Flood estimation handbook (Vol. 3). Wallingford: Institute of Hydrology.

    Google Scholar 

  2. Geskus, B. (2001). Methods for estimating the AIDS incubation time distribution when date of seroconversion is censored. Statistics in Medicine, 20, 795–812.

    Article  CAS  Google Scholar 

  3. Bowerman, B.L., & O’Connell, R.T. (1993). Forecasting and time series: an applied approach. Belmont: Duxbury Press.

    Google Scholar 

  4. Granger, C.W. (1980). Forecasting methods. New York: Academic.

    Google Scholar 

  5. Baumann, D.D., Boland, J.J., Hanemann, W.M. (1998). Urban water demand management and planning. New York: McGraw-Hill.

    Google Scholar 

  6. Arbues, F., Garcia-Valinas, M.A., Martinez-Espineira, R. (2003). Estimation of residential water demand: a state-of-the-art review. Journal of Socio Economics, 32, 81–102.

    Article  Google Scholar 

  7. Ashkar, F., & Mahdi, S. (2006). Fitting the log-logistic distribution by generalized moments. Journal of Hydrology, 328, 694–703.

    Article  Google Scholar 

  8. Venter, G. (1994). Introduction to selected papers from the variability in reserves prize program. Casualty Actuarial Society Forum, 1, 91–101.

    Google Scholar 

  9. Box, G.P., & Jenkins, G.M. (1976). Time series analysis: forecasting and control. San Francisco: Holden-Day.

    Google Scholar 

  10. Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika, 60, 255–266.

    Article  Google Scholar 

  11. Chen, H.-L., & Rao, A.R. (2002). Testing hydrologic time series for stationarity. Journal of Hydrologic Engineering, 7, 129–136.

    Article  Google Scholar 

  12. Briscoe, J. (1997). Managing water as an economic good. In M. Kay, T. Franks and L. Smith (Eds.), Water: economics, management and demand (pp. 339–361). London: E & F Spon.

    Google Scholar 

  13. Salas, J.D. (1993). Analysis and modeling of hydrologic time series. In D.R. Maidment (Ed.), Handbook of hydrology (Sections 19.5–19.9). New York: MacGraw-Hill.

    Google Scholar 

  14. Salas, J.D., & Obeysekera, J.T.B. (1992). Conceptual basis of seasonal streamflow time series models. Journal of Hydraulic Engineering, 118, 1186–1194.

    Article  Google Scholar 

  15. Hamilton, J.D. (1994). Time series analysis. Princeton: Princeton University Press.

    Google Scholar 

  16. Dalhuisen, J.M., Florax, R.J.G.M., de Groot, H.L.F., Nijkamp, P. (2003). Price and income elasticities of residential water demand: a meta-analysis. Land Economics, 79, 292–308.

    Article  Google Scholar 

  17. Alkasasbeh, M., & Raqab, M.Z. (2009). Estimation of the generalized distribution parameters: comparative study. Statistical Methodology, 8, 262–279.

    Article  Google Scholar 

  18. Ahmad, M.I., Sinclair, C.D., Werritty, A. (1987). A log-logistic flood frequency analysis. Journal of Hydrology, 98, 205–224.

    Article  Google Scholar 

  19. Chambers, M.J. (1990). Forecasting with demand systems: a comparative study. Journal of Econometrics, 44, 363–376.

    Article  Google Scholar 

  20. Shoukri, M.M., Mian, I.U.M., Tracy, D.S. (1988). Sampling properties of estimators of the log-logistic distribution with application to Canadian precipitation data. Canadian Journal of Statistics, 16, 223–236.

    Article  Google Scholar 

  21. Clements, M.P., & Hendry, D.F. (2003). Economic forecasting: some lessons from recent research. Economic Modeling, 20, 301–329.

    Article  Google Scholar 

  22. Brockwell, P.J., & Davis, R.A. (2001). Introduction to time series and forecasting (pp. 22–60). New York: Springer.

    Google Scholar 

  23. Brockwell, P.J., & Davis, R.A. (1991). Time series: theory and methods (2nd Ed.). New York: Springer.

    Book  Google Scholar 

  24. Brockwell, P.J. (2000). Continuous-time ARMA processes. In C.R. Rao & D.N. Shanbhag (Eds.), Stochastic processes: theory and methods. Handbook of statistics (Vol. 19, pp. 249–276). Amsterdam: North-Holland.

    Google Scholar 

  25. Griffin, R., & Sickles, R. (2001). Demand specification for municipal water management: evaluation of the stone-geary form. Land Economics, 77, 399–422.

    Article  Google Scholar 

  26. Hosking, R.M., & Wallis, J.R. (1997). Regional frequency analysis: an approach based on L-moments. New York: Cambridge University Press.

    Book  Google Scholar 

  27. Tsay, R.S., & Tiao, G.C. (1984). Consistent estimates of autoregressive parameters and extended sample autocorrelation function for stationary an nonstationary ARMA models. Journal of the American Statistical Association, 79, 84–96.

    Article  Google Scholar 

  28. Tsay, R.S. (2005). Analysis of financial time series (2nd Ed.). New York: Wiley.

    Book  Google Scholar 

  29. Gardiner, V., & Herrington, P. (1986). The basis and practices of water demand forecasting. Norwich: GeoBooks.

    Google Scholar 

  30. Singh, V.P., & Ahmad, M.A. (2004). Comparative evaluation of the estimators of the three-parameter generalized Pareto distribution. Journal of Statistical Computation and Simulation, 74, 91–106.

    Article  Google Scholar 

  31. Wei, W.W. (2006). Time series analysis, univariate and multivariate methods (2nd Ed.). New York: Pearson.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Editor for careful reading and for comments which greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saralees Nadarajah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mombeni, H.A., Rezaei, S., Nadarajah, S. et al. Estimation of Water Demand in Iran Based on SARIMA Models. Environ Model Assess 18, 559–565 (2013). https://doi.org/10.1007/s10666-013-9364-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-013-9364-4

Keywords

Navigation