Skip to main content
Log in

Bias Correction Techniques to Improve Air Quality Ensemble Predictions: Focus on O3 and PM Over Portugal

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Five air quality models were applied over Portugal for July 2006 and used as ensemble members. Each model was used, with its original set up in terms of meteorology, parameterizations, boundary conditions and chemical mechanisms, but with the same emission data. The validation of the individual models and the ensemble of ozone (O3) and particulate matter (PM) is performed using monitoring data from 22 background sites. The ensemble approach, based on the mean and median of the five models, did not improve significantly the skill scores due to large deviations in each ensemble member. Different bias correction techniques, including a subtraction of the mean bias and a multiplicative ratio adjustment, were implemented and analysed. The obtained datasets were compared against the individual modelled outputs using the bias, the root mean square error (RMSE) and the correlation coefficient. The applied bias correction techniques also improved the skill of the individual models and work equally well over the entire range of observed O3 and PM values. The obtained results revealed that the best bias correction technique was the ratio adjustment with a 4-day training period, demonstrating significant improvements for both analysed pollutants. The increase in the ensemble skill found comprehends a bias reduction of 88 % for O3, and 92 % for PM10, and also a decrease in 23 % for O3 and 43 % for PM10 in what concerns the RMSE. In addition, a spatial bias correction approach was also examined with successful skills comparing to the uncorrected ensemble for both pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ziehmann, C. (2000). Comparison of single-model EPS with a multimodel ensemble consisting of a few operational models. Tellus A, 52(3), 280–299.

    Article  Google Scholar 

  2. Wilczak, J., McKeen, S. A., Djalalova, I., et al. (2006). Bias-corrected ensemble and probabilistic forecasts of surface ozone over eastern North America during the summer of 2004. Journal of Geophysical Research, 111, D23S28. doi:10.1029/2006JD007598.

    Article  Google Scholar 

  3. McKeen, S., et al. (2005). Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004. Journal of Geophysical Research, 110(D21).

  4. Vautard, R., Builtjes, P., Thunis, P., Cuvelier, K., Bedogni, M., Bessagnet, B., et al. (2007). Evaluation and intercomparison of ozone and PM10 simulations by several chemistry-transport models over 4 European cities within the City-Delta project. Atmospheric Environment, 41, 173–188.

    Article  CAS  Google Scholar 

  5. van Loon, M., Vautard, R., Schaap, M., Bergström, R., Bessagnet, B., Brandt, J., et al. (2007). Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmospheric Environment, 41(10), 2083–2097.

    Article  Google Scholar 

  6. Pagowski, M., Grell, G. A., Devenyi, D., Peckham, S., McKeen, S. A., Gong, W., et al. (2006). Application of dynamic linear regression to improve the skill of ensemble-based deterministic ozone forecasts. Atmospheric Environment, 40, 3240–3250.

    Article  CAS  Google Scholar 

  7. Delle Monache, L., Deng, X., Zhou, Y., & Stull, R. (2006a). Ozone ensemble forecasts: 1. A new ensemble design. Journal of Geophysical Research, 111, D05307. doi:10.1029/2005JD006310.

    Article  Google Scholar 

  8. Delle Monache, L., Nipen, T., Deng, X., Zhou, Y., & Stull, R. (2006b). Ozone ensemble forecasts: 2. A Kalman filter predictor bias correction. Journal of Geophysical Research, 111, D05308. doi:10.1029/2005JD006311.

    Article  Google Scholar 

  9. Djalalova, I., Wilczak, J., McKeen, S., Grell, G., Peckhama, S., Pagowski, M., et al. (2010). Ensemble and bias-correction techniques for air quality model forecasts of surface O3 and PM2.5 during the TEXAQS-II experiment of 2006. Atmospheric Environment, 44, 455–467.

    Article  CAS  Google Scholar 

  10. Galmarini, S., Bianconi, R., Bellasio, R., & Graziani, G. (2001). Forecasting consequences of accidental releases from ensemble dispersion modelling. Journal of Environmental Radioactivity, 57, 203–219.

    Article  CAS  Google Scholar 

  11. Delle Monache, L., & Stull, R. (2003). An ensemble air quality forecast over Western Europe during an ozone forecast. Atmospheric Environment, 37, 3469–3474.

    Article  CAS  Google Scholar 

  12. Galmarini, S., et al. (2004). Ensemble dispersion forecasting, part I: Concept, approach and indicators. Atmospheric Environment, 38(28), 4607–4617.

    Article  CAS  Google Scholar 

  13. Galmarini, S., Bianconi, R., Addis, R., Andronopoulos, S., Astrup, P., Bartzis, J. C., et al. (2004). Ensemble dispersion forecasting, Part II: application and evaluation. Atmospheric Environment, 38(28), 4619–4632.

    Article  CAS  Google Scholar 

  14. Mallet, V., & Sportisse, B. (2006). Ensemble-based air quality forecasts: A multimodel approach applied to ozone. Journal of Geophysical Research, 111, D18302. doi:10.1029/2005JD006675.

    Article  Google Scholar 

  15. Ciaramella, A., Giunta, G., Riccio, A. & Galmarini, S. (2009). Independent model selection for ensemble dispersion forecasting. Studies in computational intelligence, Vol. 245 (pp. 213–231). Berlin/Heidelberg: Springer.

  16. Potempski, S., & Galmarini, S. (2009). Est modus in rebus: Analytical properties of multi-model ensembles. Atmospheric Chemical Physics, 9, 9471–9489.

    Article  CAS  Google Scholar 

  17. Delle Monache, L., Wilczak, J., McKeen, S., Grell, G., Pagowski, M., Peckham, S., et al. (2008). A Kalman-filter bias correction of ozone deterministic, ensemble-averaged, and probabilistic forecasts. Tellus B, 60, 238–249.

    Article  Google Scholar 

  18. Dee, D. (2005). Bias and data assimilation. Quarterly Journal of the Royal Meteorological Society, 131, 3323–3343.

    Article  Google Scholar 

  19. ENVIRON (2008) User’s guide to the Comprehensive Air Quality model with extensions (CAMx) version 4.50 (May, 2008). http://www.camx.com.

  20. Schmidt, H., Derognat, C., Vautard, R., & Beekmann, M. (2001). A comparison of simulated and observed ozone mixing ratios for the summer of 1998 in Western Europe. Atmospheric Environment, 35, 2449–2461.

    Article  Google Scholar 

  21. Bessagnet, B., Hodzic, A., Vautard, R., Beekmann, M., Cheinet, S., Honoré, C., et al. (2004). Aerosol modelling with CHIMERE—Preliminary evaluation at the continental scale. Atmospheric Environment, 38, 2803–2817.

    Article  CAS  Google Scholar 

  22. Strunk, A., Ebel, A., Elbern, H., Friese, E., Goris, N. & Nieradzik, L. P. (2010). Four-dimensional variational assimilation of atmospheric chemical data—Application to regional modelling of air quality. In: Lecture notes in computer science (LNCS), Vol. 5910 (pp. 222–229). Berlin: Springer.

  23. Elbern, H., Strunk, A., Schmidt, H., & Talagrand, O. (2007). Emission rate and chemical state estimation by 4-dimensional variational inversion. Atmospheric Chemistry Physics, 7, 3749–3769.

    Article  CAS  Google Scholar 

  24. Schaap, M., Timmermans, R., Sauter, F., Roemer, M., Velders, G., Boersen, G., et al. (2008). The LOTOS-EUROS model: description, validation and latest developments. International Journal of Environment and Pollution, 32(2), 270–290.

    Article  CAS  Google Scholar 

  25. Hurley, P., Physick, W., & Luhar, A. (2005). TAPM—A practical approach to prognostic meteorological and air pollution modelling’. Environmental Modelling & Software, 20, 737–752.

    Article  Google Scholar 

  26. Dudhia, J. (1993). A nonhydrostatic version of the PennState/NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Monthly Weather Review, 121, 1493–1513.

    Article  Google Scholar 

  27. Monteiro, A., Borrego, C., Miranda, A. I., Góis, V., Torres, P. & Perez, A.T. (2007). Can air quality modelling improve emission inventories? In: Proceedings of the 6th International Conference on Urban Air Quality, 26–30 March, Limassol, Cyprus, pp. 13–14.

  28. Tilmes, S., Brandt, J., Flatoy, F., Bergrstrom, R., Flemming, J., Langner, J., et al. (2002). Comparison of five Eulerian air pollution forecasting systems for the summer of 1999 using the German ozone monitoring data. Journal of Atmospheric Chemistry, 42, 91–121.

    Article  CAS  Google Scholar 

  29. Tchepel, O., Ferreira, J. & Borrego, C. (2009). Analysis of long-range transport of aerosols for Portugal using a 3D Chemical Transport Model and OMI measurements. Atmospheric Science Conference, ESA, Barcelona, Spain, 7–11 September 2009 (poster presentation).

  30. Borrego, C., Valente, J., Carvalho, A., Sá, E., Lopes, M., & Miranda, A. I. (2010). Contribution of residential wood combustion to the PM10 levels in the atmosphere. Atmospheric Environment, 44, 642–651.

    Article  CAS  Google Scholar 

  31. Stull, R. B. (1988). An introduction to boundary-layer meteorology. Dordrecht: Kluwer.

  32. Tchepel, O., & Borrego, C. (2010). Frequency analysis of air quality time series for traffic related pollutants. Journal of Environmental Monitoring, 12, 544–550. doi:10.1039/b913797a.

    Article  CAS  Google Scholar 

  33. Talagrand, O., Vautard, R. & Strauss, B. (1998). Evaluation of probabilistic prediction systems. Proceedings of the Seminar on Predictability, Reading, UK, ECMWF, pp. 1–26.

  34. Hamill, T. M. (2001). Interpretation of rank histograms for verifying ensemble forecasts. Monthly Weather Review, 129, 550–560.

    Article  Google Scholar 

  35. Borrego, C., Monteiro, A., Pay, M. T., Ribeiro, I., Miranda, A. I., Basart, S., et al. (2011). How bias-correction can improve air quality forecast over Portugal. Atmospheric Environment, 45(37), 6629–6641.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Portuguese Environmental Protection Agency for the observational dataset support. Thanks are extended to the Portuguese ‘Ministério da Ciência, da Tecnologia e do Ensino Superior’ for the financing of ENSEMBLAIR (POCI/AMB/66707/2006) project, for the PhD grant of V. Martins (SFRH/BD/39799/2007) and of Isabel Ribeiro (SFRH/BD/60370/2009) and the post doc grant of J. Ferreira (SFRH/BPD/40620/2007). COST ES0602 is also acknowledged. In addition, this work was also supported by the German Academic Exchange Service Program and the CRUP—Accoes Integradas Luso-Alemãs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Monteiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteiro, A., Ribeiro, I., Tchepel, O. et al. Bias Correction Techniques to Improve Air Quality Ensemble Predictions: Focus on O3 and PM Over Portugal. Environ Model Assess 18, 533–546 (2013). https://doi.org/10.1007/s10666-013-9358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-013-9358-2

Keywords

Navigation