Environmental Modeling & Assessment

, Volume 17, Issue 6, pp 653–671 | Cite as

Application of Sensitivity and Flux Analyses for the Reduction of Model Predicting the Photooxidative Degradation of an Azo Dye in Aqueous Media

  • Hrvoje KusicEmail author
  • Natalija Koprivanac
  • Ana Loncaric BozicEmail author


The prediction of the system behavior is of significant interest when evaluating appropriate technologies for wastewater treatment. The robust prediction could be achieved by empirical mathematical modeling techniques, but they do not include steps in degradation of organic pollutants. Mechanistic models (MM) include chemical/physical phenomena, but may also include numerous reactions resulting with the complicated kinetic expressions with large number of parameters. This modeling approach can be challenging for complex system such as advanced oxidation processes. With the goal to reduce the number of reactions involved in developed MM, keeping the high prediction power, sensitivity, and flux analyses was employed. The results showed that MM describing the degradation of organic dye in water matrix by photooxidation processes can be significantly simplified, by reducing the number of reactions included without affecting the predictive power. The calculated root mean square deviation values between data predicted by MM and reduced MMR differ insignificantly (≤1.4 %).


Mathematical modeling Sensitivity analysis Flux analysis Kinetic model reduction Photooxidative degradation 



We would like to acknowledge the financial support from the Ministry of Science, Education and Sport, Republic of Croatia (Project #125-1253092-1981).

Supplementary material

10666_2012_9322_MOESM1_ESM.doc (210 kb)
ESM 1 (DOC 209 kb)


  1. 1.
    Koprivanac, N., & Kusic, H. (2009). Hazardous organic pollutants in colored wastewaters. New York: Nova Science.Google Scholar
  2. 2.
    Nilsson, R., Nordlinder, R., & Wass, U. (1993). Asthma, rhinitis, and dermatitis in workers exposed to reactive dyes. British Journal of Industrial Medicine, 50, 65–70.Google Scholar
  3. 3.
    Ozturk, A., & Abdullah, M. I. (2006). Toxicological effect of indole and its azo dye derivatives on some microorganisms under aerobic conditions. Science of the Total Environment, 358, 137–142.CrossRefGoogle Scholar
  4. 4.
    Forgacs, E., Cserhati, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environmental International, 30, 953–971.CrossRefGoogle Scholar
  5. 5.
    Gogate, R., & Pandit, B. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 8, 501–551.CrossRefGoogle Scholar
  6. 6.
    Parsons, S. (2004). Advanced oxidation processes for water and wastewater treatment. London: IWA.Google Scholar
  7. 7.
    Kamel, D., Sihem, A., Halima, C., & Tahar, S. (2009). Decolourization process of an azoique dye (Congo red) by photochemical methods in homogeneous medium. Desalination, 247, 412–422.CrossRefGoogle Scholar
  8. 8.
    Kusic, H., Jovic, M., Kos, N., Koprivanac, N., & Marin, V. (2010). The comparison of photooxidation processes for the minimization of organic load of colored wastewater applying the response surface methodology. Journal of Hazardous Materials, 183, 189–202.CrossRefGoogle Scholar
  9. 9.
    Peternel, I., Koprivanac, N., & Kusic, H. (2006). UV-based processes for reactive azo dye mineralization. Water Research, 2006, 525–532.CrossRefGoogle Scholar
  10. 10.
    Guimarães, O. L. C., dos Reis Chagas, M. H., Filho, D. N. V., Siqueira, A. F., Filho, H. J. I., de Aquino, H. O. Q., et al. (2008). Discoloration process modeling by neural network. Chemical Engineering Journal, 140, 71–76.CrossRefGoogle Scholar
  11. 11.
    Pontes, R. F. F., Moraes, J. E. F., Machulek, A., Jr., & Pinto, J. M. (2010). A mechanistic kinetic model for phenol degradation by the Fenton process. Journal of Hazardous Materials, 176, 402–413.CrossRefGoogle Scholar
  12. 12.
    Crittenden, J. C., Hu, S., Hand, D. W., & Green, S. A. (1999). A kinetic model for H2O2/UV process in a completely mixed batch reactor. Water Research, 33, 2315–2328.CrossRefGoogle Scholar
  13. 13.
    Kralik, P., Kusic, H., Koprivanac, N., & Loncaric Bozic, A. (2010). Degradation of chlorinated hydrocarbons by UV/H2O2: the application of experimental design and kinetic modeling approach. Chemical Engineering Journal, 158, 154–166.CrossRefGoogle Scholar
  14. 14.
    Lovato, M. E., Martín, C. A., & Cassano, A. E. (2009). A reaction kinetic model for ozone decomposition in aqueous media valid for neutral and acidic pH. Chemical Engineering Journal, 146, 486–497.CrossRefGoogle Scholar
  15. 15.
    Kusic, H., Juretic, D., Koprivanac, N., Marin, V., & Loncaric Bozic, A. (2011). Photooxidation processes for an azo dye in aqueous media: modeling of degradation kinetic and ecological parameters evaluation. Journal of Hazardous Materials, 185, 1558–1568.CrossRefGoogle Scholar
  16. 16.
    Simunovic, M., Kusic, H., Koprivanac, N., & Loncaric Bozic, A. (2011). Treatment of simulated industrial wastewater by photo-Fenton process: Part II. The development of mechanistic model. Chemical Engineering Journal, 173, 280–289.CrossRefGoogle Scholar
  17. 17.
    Grymonpre, D. R., Sharma, A. K., Finney, W. C., & Locke, B. R. (2001). The role of Fenton’s reaction in aqueous phase pulsed streamer corona reactors. Chemical Engineering Journal, 82, 189–207.CrossRefGoogle Scholar
  18. 18.
    Smets, I., Bernaerts, K., Sun, J., Marchal, K., Vanderleyden, J., & Van Impe, J. (2002). Sensitivity function-based model reduction: a bacterial gene expression case study. Biotechnology and Bioengineering, 80, 195–200.CrossRefGoogle Scholar
  19. 19.
    Zhu, J. Y., Dittmeyer, R., & Hofmann, H. (1993). Application of sensitivity analysis to the reduction of a complex kinetic model for the homogeneous oxidative coupling of methane. Chemical Engineering and Processing, 32, 167–176.CrossRefGoogle Scholar
  20. 20.
    Lin, Y.-H., & Wu, C.-L. (2011). Sensitivity analysis of phenol degradation with sulfate reduction under anaerobic conditions. Environmental Modeling and Assessment, 16, 213–225.CrossRefGoogle Scholar
  21. 21.
    Saltelli, A., Ratto, M., Tarantola, S., & Campolongo, F. (2005). Sensitivity analysis for chemical models. Chemical Reviews, 105, 2811–2828.CrossRefGoogle Scholar
  22. 22.
    Kusic, H., Koprivanac, N., Horvat, S., Bakija, S., & Loncaric Bozic, A. (2009). Modeling dye degradation kinetic using dark- and photo-Fenton type processes. Chemical Engineering Journal, 155, 144–154.CrossRefGoogle Scholar
  23. 23.
    Audenaert, W. T. M., Callewaert, M., Nopens, I., Cromphout, J., Vanhoucke, R., Dumoulin, A., et al. (2010). Full-scale modelling of an ozone reactor for drinking water treatment. Chemical Engineering Journal, 157, 551–557.CrossRefGoogle Scholar
  24. 24.
    Liu, G., Swihart, M. T., & Neelamegham, S. (2005). Sensitivity, principal component and flux analysis applied to signal transduction: the case of epidermal growth factor mediated signaling. Bioinformatics, 21, 1194–1202.CrossRefGoogle Scholar
  25. 25.
    Huie, R. E., & Clifton, C. L. (1996). Kinetics of the reaction of the sulfate radical with the oxalate anion. International Journal of Chemical Kinetics, 28, 195–199.CrossRefGoogle Scholar
  26. 26.
    Stylidi, M., Kondarides, D. I., & Verykios, X. E. (2003). Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 40, 271–286.CrossRefGoogle Scholar
  27. 27.
    Connors, K. A. (1990). Chemical kinetics: the study of reaction rates in solution. New York: Wiley-VCH.Google Scholar
  28. 28.
    Beltran, F. J. (2003). Ozone–UV radiation–hydrogen peroxide oxidation technologies. In M. A. Tarr (Ed.), Chemical degradation methods for wastes and pollutants, environmental and industrial applications (pp. 1–77). New York: Marcel Dekker.Google Scholar
  29. 29.
    Criquet, J., & Leitner, N. K. V. (2009). Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere, 77, 194–200.CrossRefGoogle Scholar
  30. 30.
    Liang, C., & Lai, M.-C. (2008). Trichlorethylene degradation by zero valent iron activated persulfate oxidation. Environmental Engineering Science, 25, 1071–1077.CrossRefGoogle Scholar
  31. 31.
    Hoigné, J., & Bader, H. (1983). Rate constants of reactions of ozone with organic and inorganic compounds in water—II: dissociating organic compounds. Water Research, 17, 185–194.CrossRefGoogle Scholar
  32. 32.
    Varma, A., Morbidelli, H., & Wu, H. (1999). Parametric sensitivity in chemical systems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  33. 33.
    Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O) in aqueous solution. Journal of Physical and Chemical Reference Data, 17, 513–586.CrossRefGoogle Scholar
  34. 34.
    Neta, P., Madhavan, V., Zemel, H., & Fesseden, R. W. (1977). Rate constants and mechanism of reaction of SO4 with aromatic compounds. Journal of American Chemical Society, 99, 163–164.CrossRefGoogle Scholar
  35. 35.
    Lam S.H. (1995). Reduced chemical modeling and sensitivity analysis. Available at∼lam/SHL/VKI.pdf.
  36. 36.
    Okino, M. S., & Mavrovouniotis, M. L. (1998). Simplification of mathematical models of chemical reaction systems. Chemical Reviews, 98, 391–408.CrossRefGoogle Scholar
  37. 37.
    Bendtsen, A. B., Glarborg, P., & Dam-Johansen, K. (2001). Visualization methods in analysis of detailed chemical kinetic modeling. Computers and Chemistry, 25, 161–170.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations