The GTP of Methane: Modeling Analysis of Temperature Impacts of Methane and Carbon Dioxide Reductions

Abstract

The Global Temperature Potential (GTP) has recently been proposed as an alternative to the Global Warming Potential (GWP). Using two different Earth Models of Intermediate Complexity, we show that the solution to the 100-year sustained GTP for methane is significantly larger than the equivalent GWP due to the inclusion of future changes in greenhouse gas concentrations in the reference scenario and different atmospheric chemistry assumptions. This result suggests that methane reductions may be undervalued when using GWPs, but the policy implications depend on how the objectives of greenhouse gas policy are defined.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    C. Bohringer, A. Loschel and T. F. Rutherford, 2006. Efficiency gains from “what”-flexibility in climate policy an integrated CGE assessment. The Energy Journal, 405–424.

  2. 2.

    Bonan, G. B., Oleson, K. W., Vertenstein, M., Levis, S., Zeng, X. B., Dai, Y. J., et al. (2002). The land surface climatology of the community land model coupled to the NCAR community climate model. Journal of Climate, 15(22), 3123–3149.

    Article  Google Scholar 

  3. 3.

    Boucher, O., Friedlingstein, P., Collins, B., & Shine, K. P. (2009). The indirect global warming potential and global temperature change potential due to methane oxidation. Environmental Research Letters, 4, 1–5.

    Article  Google Scholar 

  4. 4.

    K.L. Denman, G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S Ramachandran, P.L. da Silva Dias, S.C. Wofsy and X. Zhang, 2007. Couplings Between Changes in the Climate System and Biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  5. 5.

    S. Dutkiewicz, A. Sokolov, J. Scott and P. Stone, 2005. A three-dimensional ocean–sea ice–carbon cycle model and its coupling to a two-dimensional atmospheric model: Uses in climate change studies. 122, MIT Joint Program Report, Cambridge, MA.

  6. 6.

    Felzer, B., Kicklighter, D., Melillo, J., Wang, C., Zhuang, Q., & Prinn, R. (2004). Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus Series B-Chemical and Physical Meteorology, 56(3), 230–248.

    Article  Google Scholar 

  7. 7.

    Felzer, B., Reilly, J., Melillo, J., Kicklighter, D., Sarofim, M., Wang, C., et al. (2005). Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Climatic Change, 73(3), 345–373.

    Article  CAS  Google Scholar 

  8. 8.

    Forest, C. E., Stone, P. H., & Sokolov, A. P. (2008). Constraining climate model parameters from observed 20th century changes. Tellus Series a-Dynamic Meteorology and Oceanography, 60(5), 911–920.

    Article  Google Scholar 

  9. 9.

    Fuglestvedt, J. S., Shine, K. P., Berntsen, T., Cook, J., Lee, D. S., Stenke, A., et al. (2009). Transport impacts on atmosphere and climate: Metrics. Atmospheric Environment. doi:10.1016/j.atmosenv.2009.04.044.

  10. 10.

    Hansen, J., Russell, D., Rind, D., Stone, P., Lacis, A., Lebedeff, S., et al. (1983). Efficient three-dimensional global models for climate studies: Models I and II. M. Weather Rev., 111, 609–662.

    Article  Google Scholar 

  11. 11.

    Hayhoe, K., Jain, A., Kheshgi, H., & Wuebbles, D. (2000). Contribution of CH4 to multi-gas emission reduction targets: The impact of atmospheric chemistry on GWPs. In J. van Ham, A. P. M. Baede, L. A. Meyer, & R. Ybema (Eds.), Non-CO 2 Greenhouse Gases: Scientific Understanding, Control and Implementation. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  12. 12.

    Johansson, D. J. A., Persson, U. M., & Azar, C. (2006). The cost of using global warming potentials—analysing the trade off between CO2, CH4 and N2O. Clim Change, 77, 291–309.

    Article  Google Scholar 

  13. 13.

    IPCC, 2009. Meeting Report of the Expert Meeting on the Science of Alternative Metrics. G. K. Plattner, T. F. Stocker, P. Midgley and M. Tignor (Editors). IPCC Working Group I Technical Support Unit, University of Bern, Bern Switzerland, pp. 75.

  14. 14.

    Jackson, S. (2009). Parallel pursuit of near-term and long-term climate mitigation. Science, 326, 526–527.

    Article  CAS  Google Scholar 

  15. 15.

    Kann, A., & Weyant, J. P. (2000). Approaches for performing uncertainty analysis in large-scale energy/economic policy models. Environmental Modeling and Assessment, 5(1), 29–46.

    Article  Google Scholar 

  16. 16.

    Y. Liu, 1996. Modeling the emissions of nitrous oxide (N2O) and methane (CH4) from the terrestrial biosphere to the atmosphere. Report 10, MIT Joint Program Cambridge, MA.

  17. 17.

    Manne, A. S., & Richels, R. G. (2001). An alternative approach to establishing trade-offs among greenhouse gases. Nature, 410(6829), 675–677.

    Article  CAS  Google Scholar 

  18. 18.

    Mayer, M., Wang, C., Webster, M., & Prinn, R. G. (2000). Linking local air pollution to global chemistry and climate. Journal of Geophysical Research-Atmospheres, 105(D18), 22869–22896.

    Article  CAS  Google Scholar 

  19. 19.

    Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore, B., Vorosmarty, C. J., & Schloss, A. L. (1993). Global climate-change and terrestrial net primary production. Nature, 363(6426), 234–240.

    Article  CAS  Google Scholar 

  20. 20.

    Montero, J. P. (2005). Pollution markets with imperfectly observed emissions. Rand Journal Of Economics, 36(3), 645–660.

    Google Scholar 

  21. 21.

    O’Neill, B. C. (2000). The jury is still out on global warming potentials. Climatic Change, 44(4), 427–443.

    Article  Google Scholar 

  22. 22.

    O’Neill, B. C. (2003). Economics, natural science, and the costs of global warming potentials—An editorial comment. Climatic Change, 58(3), 251–260.

    Article  Google Scholar 

  23. 23.

    Prinn, R., Jacoby, H., Sokolov, A., Wang, C., Xiao, X., Yang, Z., et al. (1999). Integrated global system model for climate policy assessment: Feedbacks and sensitivity studies. Climatic Change, 41(3–4), 469–546.

    Article  CAS  Google Scholar 

  24. 24.

    Reilly, J., Prinn, R., Harnisch, J., Fitzmaurice, J., Jacoby, H., Kicklighter, D., et al. (1999). Multi-gas assessment of the Kyoto Protocol. Nature, 401(6753), 549–555.

    Article  CAS  Google Scholar 

  25. 25.

    Reilly, J. M., & Richards, K. R. (1993). Climate change damage and the trace gas index issue. Env. Res. Econ., 3, 41–61.

    Article  Google Scholar 

  26. 26.

    Reilly, J., Sarofim, M., Paltsev, S., & Prinn, R. (2006). The role of non-CO2 GHGs in climate policy: Analysis using the MIT IGSM. The Energy Journal, Multi-Greenhouse Gas Mitigation and Climate Policy Special Issue, 27, 503–520.

    Google Scholar 

  27. 27.

    D. M. Reiner, 2002. Casual reasoning and goal setting: A comparative study of air pollution, antitrust and climate change policies. Massachusetts Institute of Technology Dept. of Political Science PhD Thesis, 441 pp.

  28. 28.

    M. C. Sarofim, 2007. Climate policy design: Interactions among carbon dioxide, methane, and urban air pollution constraints. Massachusetts Institute of Technology Engineering Systems Division PhD Thesis, 189 pp.

  29. 29.

    Sarofim, M. C., Forest, C. E., Reiner, D. M., & Reilly, J. M. (2005). Stabilization and global climate policy. Global and Planetary Change, 47(2–4), 266–272.

    Article  Google Scholar 

  30. 30.

    E. A. Scheehle and D. Kruger, 2006. Global anthropogenic methane and nitrous oxide emissions. The Energy Journal, 33–44.

  31. 31.

    C. A. Schlosser and D. Kicklighter, 2007. A land model system for integrated global change assessments. Report 147, MIT Joint Program.

  32. 32.

    Shindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G. A., Unger, N., & Bauer, S. E. (2009). Improved attribution of climate forcing to emissions. Science, 326, 716–718. doi:10.1126/science.1174760.

    Article  CAS  Google Scholar 

  33. 33.

    Shine, K. P. (2009). The global warming potential—The need for an interdisciplinary retrial. An editorial comment. Climatic Change, 96, 467–472.

    Article  Google Scholar 

  34. 34.

    K. P. Shine, T. K. Berntsen, J. S. Fuglestvedt, R. B. Skeie and N. Stuber, 2006. Comparing the climate effect of emissions of short- and long-lived climate agents, London, England, pp. 1903–1914.

  35. 35.

    Shine, K. P., Fuglestvedt, J. S., Hailemariam, K., & Stuber, N. (2005). Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Climatic Change, 68(3), 281–302.

    Article  CAS  Google Scholar 

  36. 36.

    Smith, S. J. (2003). The evaluation of greenhouse gas indices. Climatic Change, 58, 261–265.

    Article  CAS  Google Scholar 

  37. 37.

    Sokolov, A. P., Kicklighter, D. W., Melillo, J. M., Felzer, B. S., Schlosser, C. A., & Cronin, T. W. (2008). Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. Journal of Climate, 21(15), 3776–3796.

    Article  Google Scholar 

  38. 38.

    A. P. Sokolov, C. A. Schlosser, S. Dutkiewicz, S. Paltsev, D. W. Kicklighter, H. D. Jacoby, R. G. Prinn, C. E. Forest, J. Reilly, C. Wang, B. Felzer, M. C. Sarofim, J. Scott, P. H. Stone, J. M. Melillo and J. Cohen, 2005. The MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation. Report 124, MIT Joint Program.

  39. 39.

    Sokolov, A. P., & Stone, P. H. (1998). A flexible climate model for use in integrated assessments. Climate Dynamics, 14(4), 291–303.

    Article  Google Scholar 

  40. 40.

    Stavins, R. N. (1995). Transaction costs and tradeable permits. Journal of Environmental Economics and Management, 29(2), 133–148.

    Article  Google Scholar 

  41. 41.

    Tanaka, K., O’Neill, B. C., Rokityanskiy, D., Obersteiner, M., & Tol, R. S. J. (2009). Evaluating global warming potentials with historical temperature. Clim Change. doi:10.1007/s10584-009-9566-6.

  42. 42.

    Tol, R. S. J., Heintz, R. J., & Lammers, P. E. M. (2003). Methane emission reduction: An application of FUND. Climatic Change, 57(1–2), 71–98.

    Article  CAS  Google Scholar 

  43. 43.

    Us, E. P. A. (2006). Global anthropogenic non-CO 2 greenhouse gas emissions 1990–2020. Washington, DC: US Environmental Protection Agency.

    Google Scholar 

  44. 44.

    van Vuuren, D. P., Weyant, J., & de la Chesnaye, F. (2006). Multi-gas scenarios to stabilize radiative forcing. Energy Economics, 28(1), 102–120.

    Article  Google Scholar 

  45. 45.

    Victor, D. G. (1991). Limits of market-based strategies for slowing global warming—The case of tradeable permits. Policy Sciences, 24(2), 199–222.

    Article  Google Scholar 

  46. 46.

    Wang, C., Prinn, R. G., & Sokolov, A. (1998). A global interactive chemistry and climate model: Formulation and testing. Journal of Geophysical Research-Atmospheres, 103(D3), 3399–3417.

    Article  CAS  Google Scholar 

  47. 47.

    Webster, M., Forest, C., Reilly, J., Babiker, M., Kicklighter, D., Mayer, M., et al. (2003). Uncertainty analysis of climate change and policy response. Climatic Change, 61(3), 295–320.

    Article  Google Scholar 

  48. 48.

    West, J. J., Fiore, A. M., Horowitz, L. W., & Mauzerall, D. L. (2006). Global health benefits of mitigating ozone pollution with methane emission controls. Proceedings of the National Academy of Sciences of the United States of America, 103(11), 3988–3993.

    Article  CAS  Google Scholar 

  49. 49.

    Wigley, T. M. L. (1998). The Kyoto Protocol: CO2, CH4 and climate implications. Geophysical Research Letters, 25(13), 2285–2288.

    Article  CAS  Google Scholar 

  50. 50.

    Wigley, T. M. L., Clarke, L. E., Edmonds, J. A., Jacoby, H. D., Paltsev, S., Pitcher, H., et al. (2009). Uncertainties in climate stabilization. Climatic Change, 97(1–2), 85–121.

    Article  CAS  Google Scholar 

  51. 51.

    Wuebbles, D. J., Jain, A. K., Patten, K. O., & Grant, K. E. (1995). Sensitivity of direct global warming potentials to key uncertainties. Clim. Change, 29, 265–297.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Andrei Sokolov for the assistance in running model simulations during the revision process, as well as the editors and reviewers for feedback that led to significant improvements in the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcus C. Sarofim.

Additional information

Disclaimer: This publication was developed under Cooperative Agreement No. X3 83232801 awarded by the U.S. Environmental Protection Agency to the American Association for the Advancement of Science. It has not been reviewed by EPA. The views expressed in this document are solely those of the author and do not necessarily reflect those of the Agency. EPA does not endorse any products or commercial services mentioned in this publication.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sarofim, M.C. The GTP of Methane: Modeling Analysis of Temperature Impacts of Methane and Carbon Dioxide Reductions. Environ Model Assess 17, 231–239 (2012). https://doi.org/10.1007/s10666-011-9287-x

Download citation

Keywords

  • Methane
  • Carbon dioxide
  • Global warming potential
  • Metrics
  • Global temperature potential
  • EMIC modeling