Advertisement

Environmental Modeling & Assessment

, Volume 17, Issue 3, pp 231–239 | Cite as

The GTP of Methane: Modeling Analysis of Temperature Impacts of Methane and Carbon Dioxide Reductions

  • Marcus C. SarofimEmail author
Article

Abstract

The Global Temperature Potential (GTP) has recently been proposed as an alternative to the Global Warming Potential (GWP). Using two different Earth Models of Intermediate Complexity, we show that the solution to the 100-year sustained GTP for methane is significantly larger than the equivalent GWP due to the inclusion of future changes in greenhouse gas concentrations in the reference scenario and different atmospheric chemistry assumptions. This result suggests that methane reductions may be undervalued when using GWPs, but the policy implications depend on how the objectives of greenhouse gas policy are defined.

Keywords

Methane Carbon dioxide Global warming potential Metrics Global temperature potential EMIC modeling 

Notes

Acknowledgments

We thank Andrei Sokolov for the assistance in running model simulations during the revision process, as well as the editors and reviewers for feedback that led to significant improvements in the manuscript.

References

  1. 1.
    C. Bohringer, A. Loschel and T. F. Rutherford, 2006. Efficiency gains from “what”-flexibility in climate policy an integrated CGE assessment. The Energy Journal, 405–424.Google Scholar
  2. 2.
    Bonan, G. B., Oleson, K. W., Vertenstein, M., Levis, S., Zeng, X. B., Dai, Y. J., et al. (2002). The land surface climatology of the community land model coupled to the NCAR community climate model. Journal of Climate, 15(22), 3123–3149.CrossRefGoogle Scholar
  3. 3.
    Boucher, O., Friedlingstein, P., Collins, B., & Shine, K. P. (2009). The indirect global warming potential and global temperature change potential due to methane oxidation. Environmental Research Letters, 4, 1–5.CrossRefGoogle Scholar
  4. 4.
    K.L. Denman, G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S Ramachandran, P.L. da Silva Dias, S.C. Wofsy and X. Zhang, 2007. Couplings Between Changes in the Climate System and Biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  5. 5.
    S. Dutkiewicz, A. Sokolov, J. Scott and P. Stone, 2005. A three-dimensional ocean–sea ice–carbon cycle model and its coupling to a two-dimensional atmospheric model: Uses in climate change studies. 122, MIT Joint Program Report, Cambridge, MA.Google Scholar
  6. 6.
    Felzer, B., Kicklighter, D., Melillo, J., Wang, C., Zhuang, Q., & Prinn, R. (2004). Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus Series B-Chemical and Physical Meteorology, 56(3), 230–248.CrossRefGoogle Scholar
  7. 7.
    Felzer, B., Reilly, J., Melillo, J., Kicklighter, D., Sarofim, M., Wang, C., et al. (2005). Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Climatic Change, 73(3), 345–373.CrossRefGoogle Scholar
  8. 8.
    Forest, C. E., Stone, P. H., & Sokolov, A. P. (2008). Constraining climate model parameters from observed 20th century changes. Tellus Series a-Dynamic Meteorology and Oceanography, 60(5), 911–920.CrossRefGoogle Scholar
  9. 9.
    Fuglestvedt, J. S., Shine, K. P., Berntsen, T., Cook, J., Lee, D. S., Stenke, A., et al. (2009). Transport impacts on atmosphere and climate: Metrics. Atmospheric Environment. doi: 10.1016/j.atmosenv.2009.04.044.
  10. 10.
    Hansen, J., Russell, D., Rind, D., Stone, P., Lacis, A., Lebedeff, S., et al. (1983). Efficient three-dimensional global models for climate studies: Models I and II. M. Weather Rev., 111, 609–662.CrossRefGoogle Scholar
  11. 11.
    Hayhoe, K., Jain, A., Kheshgi, H., & Wuebbles, D. (2000). Contribution of CH4 to multi-gas emission reduction targets: The impact of atmospheric chemistry on GWPs. In J. van Ham, A. P. M. Baede, L. A. Meyer, & R. Ybema (Eds.), Non-CO 2 Greenhouse Gases: Scientific Understanding, Control and Implementation. Dordrecht: Kluwer Academic Publishers.Google Scholar
  12. 12.
    Johansson, D. J. A., Persson, U. M., & Azar, C. (2006). The cost of using global warming potentials—analysing the trade off between CO2, CH4 and N2O. Clim Change, 77, 291–309.CrossRefGoogle Scholar
  13. 13.
    IPCC, 2009. Meeting Report of the Expert Meeting on the Science of Alternative Metrics. G. K. Plattner, T. F. Stocker, P. Midgley and M. Tignor (Editors). IPCC Working Group I Technical Support Unit, University of Bern, Bern Switzerland, pp. 75.Google Scholar
  14. 14.
    Jackson, S. (2009). Parallel pursuit of near-term and long-term climate mitigation. Science, 326, 526–527.CrossRefGoogle Scholar
  15. 15.
    Kann, A., & Weyant, J. P. (2000). Approaches for performing uncertainty analysis in large-scale energy/economic policy models. Environmental Modeling and Assessment, 5(1), 29–46.CrossRefGoogle Scholar
  16. 16.
    Y. Liu, 1996. Modeling the emissions of nitrous oxide (N2O) and methane (CH4) from the terrestrial biosphere to the atmosphere. Report 10, MIT Joint Program Cambridge, MA.Google Scholar
  17. 17.
    Manne, A. S., & Richels, R. G. (2001). An alternative approach to establishing trade-offs among greenhouse gases. Nature, 410(6829), 675–677.CrossRefGoogle Scholar
  18. 18.
    Mayer, M., Wang, C., Webster, M., & Prinn, R. G. (2000). Linking local air pollution to global chemistry and climate. Journal of Geophysical Research-Atmospheres, 105(D18), 22869–22896.CrossRefGoogle Scholar
  19. 19.
    Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore, B., Vorosmarty, C. J., & Schloss, A. L. (1993). Global climate-change and terrestrial net primary production. Nature, 363(6426), 234–240.CrossRefGoogle Scholar
  20. 20.
    Montero, J. P. (2005). Pollution markets with imperfectly observed emissions. Rand Journal Of Economics, 36(3), 645–660.Google Scholar
  21. 21.
    O’Neill, B. C. (2000). The jury is still out on global warming potentials. Climatic Change, 44(4), 427–443.CrossRefGoogle Scholar
  22. 22.
    O’Neill, B. C. (2003). Economics, natural science, and the costs of global warming potentials—An editorial comment. Climatic Change, 58(3), 251–260.CrossRefGoogle Scholar
  23. 23.
    Prinn, R., Jacoby, H., Sokolov, A., Wang, C., Xiao, X., Yang, Z., et al. (1999). Integrated global system model for climate policy assessment: Feedbacks and sensitivity studies. Climatic Change, 41(3–4), 469–546.CrossRefGoogle Scholar
  24. 24.
    Reilly, J., Prinn, R., Harnisch, J., Fitzmaurice, J., Jacoby, H., Kicklighter, D., et al. (1999). Multi-gas assessment of the Kyoto Protocol. Nature, 401(6753), 549–555.CrossRefGoogle Scholar
  25. 25.
    Reilly, J. M., & Richards, K. R. (1993). Climate change damage and the trace gas index issue. Env. Res. Econ., 3, 41–61.CrossRefGoogle Scholar
  26. 26.
    Reilly, J., Sarofim, M., Paltsev, S., & Prinn, R. (2006). The role of non-CO2 GHGs in climate policy: Analysis using the MIT IGSM. The Energy Journal, Multi-Greenhouse Gas Mitigation and Climate Policy Special Issue, 27, 503–520.Google Scholar
  27. 27.
    D. M. Reiner, 2002. Casual reasoning and goal setting: A comparative study of air pollution, antitrust and climate change policies. Massachusetts Institute of Technology Dept. of Political Science PhD Thesis, 441 pp.Google Scholar
  28. 28.
    M. C. Sarofim, 2007. Climate policy design: Interactions among carbon dioxide, methane, and urban air pollution constraints. Massachusetts Institute of Technology Engineering Systems Division PhD Thesis, 189 pp.Google Scholar
  29. 29.
    Sarofim, M. C., Forest, C. E., Reiner, D. M., & Reilly, J. M. (2005). Stabilization and global climate policy. Global and Planetary Change, 47(2–4), 266–272.CrossRefGoogle Scholar
  30. 30.
    E. A. Scheehle and D. Kruger, 2006. Global anthropogenic methane and nitrous oxide emissions. The Energy Journal, 33–44.Google Scholar
  31. 31.
    C. A. Schlosser and D. Kicklighter, 2007. A land model system for integrated global change assessments. Report 147, MIT Joint Program.Google Scholar
  32. 32.
    Shindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G. A., Unger, N., & Bauer, S. E. (2009). Improved attribution of climate forcing to emissions. Science, 326, 716–718. doi: 10.1126/science.1174760.CrossRefGoogle Scholar
  33. 33.
    Shine, K. P. (2009). The global warming potential—The need for an interdisciplinary retrial. An editorial comment. Climatic Change, 96, 467–472.CrossRefGoogle Scholar
  34. 34.
    K. P. Shine, T. K. Berntsen, J. S. Fuglestvedt, R. B. Skeie and N. Stuber, 2006. Comparing the climate effect of emissions of short- and long-lived climate agents, London, England, pp. 1903–1914.Google Scholar
  35. 35.
    Shine, K. P., Fuglestvedt, J. S., Hailemariam, K., & Stuber, N. (2005). Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Climatic Change, 68(3), 281–302.CrossRefGoogle Scholar
  36. 36.
    Smith, S. J. (2003). The evaluation of greenhouse gas indices. Climatic Change, 58, 261–265.CrossRefGoogle Scholar
  37. 37.
    Sokolov, A. P., Kicklighter, D. W., Melillo, J. M., Felzer, B. S., Schlosser, C. A., & Cronin, T. W. (2008). Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. Journal of Climate, 21(15), 3776–3796.CrossRefGoogle Scholar
  38. 38.
    A. P. Sokolov, C. A. Schlosser, S. Dutkiewicz, S. Paltsev, D. W. Kicklighter, H. D. Jacoby, R. G. Prinn, C. E. Forest, J. Reilly, C. Wang, B. Felzer, M. C. Sarofim, J. Scott, P. H. Stone, J. M. Melillo and J. Cohen, 2005. The MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation. Report 124, MIT Joint Program.Google Scholar
  39. 39.
    Sokolov, A. P., & Stone, P. H. (1998). A flexible climate model for use in integrated assessments. Climate Dynamics, 14(4), 291–303.CrossRefGoogle Scholar
  40. 40.
    Stavins, R. N. (1995). Transaction costs and tradeable permits. Journal of Environmental Economics and Management, 29(2), 133–148.CrossRefGoogle Scholar
  41. 41.
    Tanaka, K., O’Neill, B. C., Rokityanskiy, D., Obersteiner, M., & Tol, R. S. J. (2009). Evaluating global warming potentials with historical temperature. Clim Change. doi: 10.1007/s10584-009-9566-6.
  42. 42.
    Tol, R. S. J., Heintz, R. J., & Lammers, P. E. M. (2003). Methane emission reduction: An application of FUND. Climatic Change, 57(1–2), 71–98.CrossRefGoogle Scholar
  43. 43.
    Us, E. P. A. (2006). Global anthropogenic non-CO 2 greenhouse gas emissions 1990–2020. Washington, DC: US Environmental Protection Agency.Google Scholar
  44. 44.
    van Vuuren, D. P., Weyant, J., & de la Chesnaye, F. (2006). Multi-gas scenarios to stabilize radiative forcing. Energy Economics, 28(1), 102–120.CrossRefGoogle Scholar
  45. 45.
    Victor, D. G. (1991). Limits of market-based strategies for slowing global warming—The case of tradeable permits. Policy Sciences, 24(2), 199–222.CrossRefGoogle Scholar
  46. 46.
    Wang, C., Prinn, R. G., & Sokolov, A. (1998). A global interactive chemistry and climate model: Formulation and testing. Journal of Geophysical Research-Atmospheres, 103(D3), 3399–3417.CrossRefGoogle Scholar
  47. 47.
    Webster, M., Forest, C., Reilly, J., Babiker, M., Kicklighter, D., Mayer, M., et al. (2003). Uncertainty analysis of climate change and policy response. Climatic Change, 61(3), 295–320.CrossRefGoogle Scholar
  48. 48.
    West, J. J., Fiore, A. M., Horowitz, L. W., & Mauzerall, D. L. (2006). Global health benefits of mitigating ozone pollution with methane emission controls. Proceedings of the National Academy of Sciences of the United States of America, 103(11), 3988–3993.CrossRefGoogle Scholar
  49. 49.
    Wigley, T. M. L. (1998). The Kyoto Protocol: CO2, CH4 and climate implications. Geophysical Research Letters, 25(13), 2285–2288.CrossRefGoogle Scholar
  50. 50.
    Wigley, T. M. L., Clarke, L. E., Edmonds, J. A., Jacoby, H. D., Paltsev, S., Pitcher, H., et al. (2009). Uncertainties in climate stabilization. Climatic Change, 97(1–2), 85–121.CrossRefGoogle Scholar
  51. 51.
    Wuebbles, D. J., Jain, A. K., Patten, K. O., & Grant, K. E. (1995). Sensitivity of direct global warming potentials to key uncertainties. Clim. Change, 29, 265–297.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Hosted by the U.S. Environmental Protection Agency Climate Change DivisionAAAS Science and Technology Policy FellowshipWashingtonUSA

Personalised recommendations