Skip to main content
Log in

Combining Stochastic Optimization and Monte Carlo Simulation to Deal with Uncertainties in Climate Policy Assessment

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

In this paper, we explore the impact of several sources of uncertainties on the assessment of energy and climate policies when one uses in a harmonized way stochastic programming in a large-scale bottom-up (BU) model and Monte Carlo simulation in a large-scale top-down (TD) model. The BU model we use is the TIMES Integrated Assessment Model, which is run in a stochastic programming version to provide a hedging emission policy to cope with the uncertainty characterizing climate sensitivity. The TD model we use is the computable general equilibrium model GEMINI-E3. Through Monte Carlo simulations of randomly generated uncertain parameter values, one provides a stochastic micro- and macro-economic analysis. Through statistical analysis of the simulation results, we analyse the impact of the uncertainties on the policy assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. The Web site http://gemini-e3.epfl.ch/ provides all information about the model, including its complete description.

  2. We used a Dual 2.6-GHz Intel Xeon computer for the simulations; thus, we had four available CPUs.

  3. Labour in the generation activity is low compared to labour in the other activities (transport, distribution) and of a similar relative size for all plants. It is thus represented as a common factor.

  4. Note that these assumptions, imposed under the FP7 European project Planets, lead to lower GDP growth than those of the most recent forecasts [15] that incorporate the impact of the current economic crisis. This low GDP growth is primarily due to the conservative growth assumptions for developing countries and especially Asia. This source of uncertainty is discussed in Section 3.3.

  5. Some recent publications [1, 35] tend to affirm that it might be impossible to resolve uncertainty about Cs in the foreseeable future. If this is the case, the decision in 2030 should be based on the worst-case alternative.

  6. Note that the IPCC AR4 best estimate is 3.

  7. Johnsson et al. [20] has been prepared by the working group on the technology assessment of the PLANETS EU-project.

  8. Note that we take an uncertainty on the technical progress associated to energy, see Section 3.2.2.

  9. Because the elasticities are different among sectors, we use here the parameter σ which is used as a multiplier to the nominal elasticities (i.e. when GEMINI-E3 is used without uncertainties).

  10. Note that we suppose that the natural gas price is indexed on oil price, see Section 3.4.

  11. This corresponds roughly to a mean surface temperature increases between 2.23°C and 2.52°C with a climate sensitivity equal to 3 according to the TIAM WORLD model.

References

  1. Allen, M. R., & Frame, D. J. (2007). ATMOSPHERE: Call off the quest. Science, 318(5850), 582–583.

    Article  CAS  Google Scholar 

  2. Andronova, N., & Schlesinger, M. E. (2001). Objective estimation of the probability distribution for climate sensitivity. Journal of Geophysical Research, 106, 22605–22612.

    Article  Google Scholar 

  3. Armington, P. S. (1969). A theory of demand for products distinguished by place of production. IMF Staff Papers, 16, 159–178.

    Article  Google Scholar 

  4. Awerbuch, S., & Sauter, R. (2006). Exploiting the oil? GDP effect to support renewables deployment. Energy Policy, 34(17), 2805–2819.

    Article  Google Scholar 

  5. Azar, C., & Dowlatabadi, H. (1999). A review of technical change in assessment of climate policy. Annual Review of Energy and the Environment, 24(1), 513–544.

    Article  Google Scholar 

  6. Barsky, R. B., & Kilian, L. (2004). Oil and the macroeconomy since the 1970s. Journal of Economic Perspectives, 18(4), 115–134.

    Article  Google Scholar 

  7. Bernard, A., & Vielle, M. (2003). Measuring the welfare cost of climate change policies: A comparative assessment based on the computable general equilibrium model GEMINI-E3. Environmental Modeling & Assessment, 8(3), 199–217.

    Article  Google Scholar 

  8. Bernard, A., & Vielle, M. (2008). GEMINI-E3, a general equilibrium model of international national interactions between economy, energy and the environment. Computational M anagement Science, 5(3), 173–206.

    Article  Google Scholar 

  9. Blanchard, O. J., & Gal, J. (2007). The m acroeconomic effects of o il price s hocks: Why are the 2000s so d ifferent from the 1970s? Technical report, MIT Department of Economics Working Paper No. 07-21.

  10. Clarke, L., Edmonds, J., Krey, V., Richels, R., Rose, S., & Tavoni, M. (2009). International climate policy architectures: Overview of the EMF 22 international scenarios. Energy Economics, 31(Supplement 2), S64–S81. International, U.S. and E.U. Climate Change Control Scenarios: Results from EMF 22.

    Article  Google Scholar 

  11. Conseil de l’Union Européenne (2008). Proposal for a decision of the European Parliament and of the Council on the effort of member states to reduce their greenhouse gas emissions to meet the community’s greenhouse gas emission reduction commitments up to 2020. Technical report, 16736/1/08.

  12. Dimaranan, B. V. (2007). Global trade, assistance, and production: The GTAP 6 data base. West Lafayette: Center for Global Trade Analysis Purdue University, Center for Global Trade Analysis, Purdue University.

  13. Edmonds, J., & Reilly, J. (1985). Global energy: Assessing the future. New York: Oxford University Press.

    Google Scholar 

  14. Energy Information Administration (2009). International energy outlook 2009. Washington, DC: EIA/DOE.

    Google Scholar 

  15. Energy Information Administration (2010). International e nergy outlook. Technical report, U.S. Department of Energy.

  16. European Commission (2007). World energy t echnology outlook—2050—WETO -H 2 -update 2007.

  17. Grubb, M., Khler, J., & Anderson, D. (2002). Induced technical change in energy and environmental modeling: Analytic approaches and policy implications. Annual Review of Energy and the Environment, 27(1), 271–308.

    Article  Google Scholar 

  18. Iman, R. L., & Helton, J. C. (1988). An investigation of uncertainty and sensitivity analysis techniques for computer models. Risk Analysis, 8(1), 71–90.

    Article  Google Scholar 

  19. Intergovernmental Panel on Climate Change (2007). Climate change 2007: Synthesis report. WMO and UNEP.

  20. Johnsson, F., Berndes, G., & Thunman, H. (2009). Report on technology: Bridging the gap. Technical report, FP7 European Research Project PLANETS (http://www.feem-project.net/planets/plastore/Deliverables/PLANETS_D10.pdf).

  21. Jones, D. W., Leiby, P. N., & Paik, I. K. (2004). Oil price shocks and the macroeconomy: What has been learned since 1996. The Energy Journal, 25(2), 1–32.

    Article  Google Scholar 

  22. Kanudia, A., & Loulou, R. (1998). Robust responses to climate change via stochastic markal: The case of Québec. European Journal of Operations Research, 106, 15–30.

    Article  Google Scholar 

  23. Kypreos, S. (2008). Stabilizing global temperature change below thresholds: Monte Carlo analyses with merge. Computational Management Science, 5(1), 141–170.

    Article  Google Scholar 

  24. Labriet, M., Loulou, R., & Kanudia, A. (2010). Modeling uncertainty in a large scale integrated energy-climate model. In J. A. Filar, & A. Haurie (Eds.), Handbook on “Uncertainty and environmental decision making”. International series in operations research and management science (pp. 51–78). Berlin: Springer.

    Google Scholar 

  25. Loulou, R. (2007). ETSAP-TIAM: The TIMES integrated assessment model. Part II: Mathematical formulation. Computational Management Science, 5(1), 7–40.

    Article  Google Scholar 

  26. Loulou, R. (2009). Report on policy scenarios: Regional economic and energy implications of reaching global climate targets—A policy scenario analysis. Technical report, FP7 European Research Project PLANETS (http://www.feem-project.net/planets/plastore/Deliverables/PLANETS_D12.pdf).

  27. Loulou, R., & Kanudia, A. (1999). Minimax regret strategies for greenhouse gas abatement: Methodology and application. Operations Research Letters, 25, 219–230.

    Article  Google Scholar 

  28. Loulou, R., & Labriet, M. (2008). ETSAP-TIAM: The TIMES integrated assessment model. Part I: Model structure. Computational Management Science, 5(1), 7–40.

    Article  Google Scholar 

  29. Loulou, R., Labriet, M., & Kanudia, A. (2009). Deterministic and stochastic analysis of alternative climate targets under differentiated cooperation regimes. Energy Economics, 31(Supplement 2), 131–143.

    Article  Google Scholar 

  30. Manne, A. S., & Richels, R. G. (1994). The costs of stabilizing global CO2 emissions: A probabilistic analysis based on expert judgment. Energy Journal, 15(1), 31–56.

    Google Scholar 

  31. Odenberger, M., & Johnsson, F. (2010). Pathways for the European electricity supply system to 2050—The role of CCS to meet stringent CO2 reduction targets. International Journal of Greenhouse Gas Control, 4(2), 327–340

    Google Scholar 

  32. Odenberger, M., Käjrstad, J., & Johnsson, F. (2008). Ramp-up of CO2 capture and storage within Europe. International Journal of Greenhouse Gas Control, 2, 417–438.

    Article  CAS  Google Scholar 

  33. Regnier, E. (2007). Oil and energy price volatility. Energy Economics, 29(3), 405–427.

    Article  Google Scholar 

  34. Reilly, J., Edmonds, J., Gardner, R., & Brenkert, A. (1987). Monte Carlo analysis of the IEA/ORAU energy/carbon emissions model. The Energy Journal, 8(3), 1–29.

    Article  Google Scholar 

  35. Roe, G. H., & Baker, M. B. (2007). Why is climate sensitivity so unpredictable? Science, 318(5850), 629–632.

    Article  CAS  Google Scholar 

  36. Scott, M. J., Sands, R. D., Edmonds, J., Liebetrau, A. M., & Engel, D. W. (1999). Uncertainty in integrated assessment models: Modeling with MiniCAM 1.0. Energy Policy, 27(14), 597.

    Article  Google Scholar 

  37. Siliverstovs, B., L’Hgaret, G., Neumann, A., & von Hirschhausen, C. (2005). International market integration for natural gas? A cointegration analysis of price in Europe, North America and Japan. Energy Economics, 27(4), 603–615.

    Article  Google Scholar 

  38. United Nations Department of Economic and Social Affairs, Population Division 191 (2006). World population p rospects: The 2004 revision, Volume III A nalytical report. New York: United Nations.

    Google Scholar 

  39. Urga, G., & Walters, C. (2003). Dynamic translog and linear logit models: A factor demand analysis of interfuel substitution in US industrial energy demand. Energy Economics, 25(1), 1–21.

    Article  Google Scholar 

  40. van Vuuren, D. P., Weyant, J., & de la Chesnaye, F. (2006). Multi-gas scenarios to stabilize radiative forcing. Energy Economics, 28(1), 102–120.

    Article  Google Scholar 

  41. Webster, M. D., Babiker, M., Mayer, M., Reilly, J. M., Harnisch, J., Sarofim, M. C., et al. (2002). Uncertainty in emissions projections for climate models. Atmospheric Environment, 36(22), 3659–3670.

    Article  CAS  Google Scholar 

  42. Webster, M., Paltsev, S., Parsons, J., Reilly, J., & Jacoby, H. (2008). Uncertainty in greenhouse e missions and costs of a tmospheric stabilization. Technical report, Joint Program Report Series, 61 pp. http://globalchange.mit.edu/pubs/abstract.php?publication_id=974.

  43. Wing, I. S. (2006). The synthesis of bottom-up and top-down approaches to climate policy: Electric power technologies and the cost of limiting US CO2 emissions. Energy Policy, 34, 3847–3869.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the FP7 European Research Project PLANETS, by GICC Research Grant from the French Ministry of Ecology and Sustainable Development (MEDDTL) and by the Swiss-NSF-NCCR climate grant. For helpful comments and discussions, we thank A. Bousquet and R. Gerlagh. Two referees’ comments have been most useful to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Babonneau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babonneau, F., Haurie, A., Loulou, R. et al. Combining Stochastic Optimization and Monte Carlo Simulation to Deal with Uncertainties in Climate Policy Assessment. Environ Model Assess 17, 51–76 (2012). https://doi.org/10.1007/s10666-011-9275-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-011-9275-1

Keywords

Navigation