Skip to main content

Advertisement

Log in

European Farmland Bird Distribution Explained by Remotely Sensed Phenological Indices

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Birds are important components of biodiversity conservation since they are capable of indicating changes in the general status of wildlife and of the countryside. The Pan-European Common Bird Monitoring Scheme (PECBM) has been launched by the BirdLife Partnership in Europe, where the European Bird Census Council has been collecting data from 20 independent breeding bird survey programs across Europe over the last 25 years. These data show dramatic declines in European farmland birds. We suggest that seasonal characteristics of vegetation cover derived from high temporal resolution remote sensing images could facilitate the monitoring the suitability of farmland bird habitats, and that these indicators may be a better choice for monitoring than climate data. We used redundancy analysis to link the PECBM data of the estimated number of farmland birds in Europe to a set of phenological and climatic indicators and to the biogeographic regions of Europe. Variance partitioning was used to account for the variation explained by the phenological and climate variables and by the area of the environmental strata individually, to define the pure effect of the variables, and to extract the total explained variance. The analysis revealed high statistical significance (p < 0.001) of the correlations between species and environment. Phenological indices explained 38% of the variance in community composition of the 23 farmland bird species, whereas climate explained 30% of the variance. After partitioning the other variables as covariables, the pure effect of phenology, climate, and environmental strata were 16%, 8%, and 16%, respectively. Based on the probability results, we suggest that phenological indicators derived from remote sensing may supply better indicators for continental scale biodiversity studies than climate only. In addition, these indicators are cost and time effective, are on continuous scale, and are readily repeatable on a large spatial coverage while supplying standardized results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson, M. J., & Gribble, N. A. (1998). Partitioning the variation among spatial, temporal and environmental components in a multivariate data set. Australian Journal of Ecology, 23, 158–167.

    Article  Google Scholar 

  2. Bailey, S. A., et al. (2004). Primary productivity and species richness: relationships among functional guilds, residency groups and vagility classes at multiple spatial scales. Ecography, 27, 207–217.

    Article  Google Scholar 

  3. BirdLife International (2007). Wellbrook Court Girton Road, Cambridge CB3 0NA, United Kingdom. http://www.birdlife.org.

  4. Blanchet, F. G., Legendre, P., & Borcard, D. (2008). Forward selection of explanatory variables. Ecology, 89, 2623–2632.

    Article  Google Scholar 

  5. Boelman, N. T., Stieglitz, M., Rueth, H. M., Sommerkorn, M., Griffin, K. L., Shaver, G. R., et al. (2003). Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra. Oecologia, 135, 414–421.

    Google Scholar 

  6. Borcard, D., & Legendre, P. (1994). Environmental control and spatial structure in ecological communities: an example using Oribatid mites (Acari, Oribatei). Environmental and Ecological Statistics, 1, 37–61.

    Article  Google Scholar 

  7. Borcard, D., & Legendre, P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighborhood matrices. Ecological Modelling, 153, 51–68.

    Article  Google Scholar 

  8. Borcard, D., Legendre, P., & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73(3), 1045–1055.

    Article  Google Scholar 

  9. Borcard, D., Legendre, P., Avois-Jacquet, C., & Tuomisto, H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85, 1826–1832.

    Article  Google Scholar 

  10. Chamberlain, D. E., Fuller, R. J., Bunce, R. G. H., Duckworth, J. C., & Shrubb, M. (2000). Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. Journal of Applied Ecology, 2000(37), 771–788.

    Article  Google Scholar 

  11. Chatterjee, S., & Price, B. (1977). Regression analysis by example. New York: Wiley.

    Google Scholar 

  12. de Beurs, K. M., & Henebry, G. M. (2010). Spatio-temporal statistical methods for modelling land surface phenlogy. In I. L. Hudson & M. R. Keatley (Eds.), Phenological research: methods for environmental and climate change analysis (pp. 177–208). Dordrecht: Springer.

    Google Scholar 

  13. Derksen, S., & Keselman, H. J. (1992). Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables. The British Journal of Mathematical and Statistical Psychology, 45, 262–282.

    Google Scholar 

  14. Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., et al. (1997). Maximum and minimum temperature trends for the globe. Science, 277, 364–367.

    Article  CAS  Google Scholar 

  15. Evans, K. L., Warren, P. H., & Gaston, K. J. (2005a). Species–energy relationships at the macroecological scale: a review of the mechanisms. Bilogical Reviews, 80, 1–25.

    Article  Google Scholar 

  16. Evans, K. L., Greenwood, J. J. D., & Gaston, K. (2005b). Dissecting the species-energy relationship. Proceeding of the Royal society B, 272, 2155–2163.

    Article  Google Scholar 

  17. Evans, K. L., James, N. A., & Gaston, K. J. (2006). Abundance, species richness and energy availability in the North American avifauna. Global Ecology and Biogeography, 15, 372–385.

    Article  Google Scholar 

  18. Freedman, L. S., Pee, D., & Midthune, D. N. (1992). The problem of underestimating the residual error variance in forward stepwise regression. Statistician, 41, 405–412.

    Article  Google Scholar 

  19. Furness, R. W., & Greenwood, J. J. D. (1993). Birds as monitors of environmental change. London: Chapman & Hall.

    Google Scholar 

  20. Gates, S., & Donald, P. F. (2000). Local extinction of British farmland birds and the prediction of further loss. Journal of Applied Ecology, 37, 806–820.

    Article  Google Scholar 

  21. Gilbert, B., & Bennett, J. R. (2010). Partitioning variation in ecological communities: do the numbers add up? Journal of Applied Ecology, 47, 1071–1082.

    Article  Google Scholar 

  22. Goward, S. N., Dye, D., Kerber, A., & Kalb, V. (1987). Comparison of North and South American biomes from AVHRR observations. GeoCarto International, 1, 27–39.

    Article  Google Scholar 

  23. Gregory, R. D., van Strien, A., Vorisek, P., Meyling, A. W. G., Noble, D. G., Foppen, R. P. B., et al. (2005). Developing indicators for European birds. Phil. Trans. R. Soc. B, 360, 269–288.

    Article  Google Scholar 

  24. Hagemeijer, E. J. M., & Blair, M. J. (Eds.). (1997). The EBCC Atlas of European Breeding Birds: their distribution and abundance. London: T & A.D. Poyser.

    Google Scholar 

  25. Hawkins, B. A. (2004). Summer vegetation, deglaciation and the anomalous bird diversity gradient in eastern North America. Global Ecology and Biogeography, 13, 321–325.

    Article  Google Scholar 

  26. Hawkins, B. A., Field, R., Cornwell, H. V., Currie, D. J., Guegan, J.-F., Kaufman, D. M., et al. (2003). Energy, water and broad-scale geographic patterns of species richness. Ecology, 84, 3105–3117.

    Article  Google Scholar 

  27. Holm, A. M. C. R., Cridland, S. W., & Roderick, M. L. (2003). The use of time-integrated NOAA NDVI data and rainfall to assess landscape degradation in the arid shrubland of Western Australia. Remote Sensing of Environment, 85, 145–158.

    Article  Google Scholar 

  28. Hudson, I. L. (2010). Interdisciplinary approaches: towards new statistical methods for phenological studies. Climatic Change, 100, 143–171.

    Article  Google Scholar 

  29. Hurlbert, A. H., & Haskell, J. P. (2003). The effect of energy and seasonality on avian species richness and community composition. The American Naturalist, 161, 83–97.

    Article  Google Scholar 

  30. Jeanneret, F., & Rutishauser, T. (2010). Phenology for topoclimatological surveys and large-scale mapping. In I. L. Hudson & M. R. Keatley (Eds.), Phenological research: methods for environmental and climate change analysis (pp. 159–175). Dordrecht: Springer.

    Google Scholar 

  31. Jeanneret, F., & Rutishauser, T. (2010). Seasonality as a core business of phenology. In I. L. Hudson & M. R. Keatley (Eds.), Phenological research: methods for environmental and climate change analysis (pp. 63–74). Dordrecht: Springer.

    Google Scholar 

  32. Jongman, R. H. G., Ter Braak, C. J. F., & Van Tongeren, O. F. R. (1995). Data analysis in community and landscape ecology. New York: Cambridge University Press.

  33. Kaspari, M., Ward, P. S., & Yuan, M. (2004). Energy gradients and the geographic distribution of local ant diversity. Oecologia, 140, 407–413.

    Article  Google Scholar 

  34. Kernan, M. R., & Helliwell, R. C. (2001). Partitioning the variation within the acid neutralizing capacity of surface waters in Scotland in relation to land cover, soil and atmospheric depositional factors. The Science of the Total Environment, 265, 39–49.

    Article  CAS  Google Scholar 

  35. Kerr, J. T., & Ostrovosky, M. (2003). From space to species: ecological applications for remote sensing. Trends in Ecology & Evolution, 18, 299–305.

    Article  Google Scholar 

  36. Kerr, J. T., & Packer, L. (1996). Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature, 385, 252–254.

    Article  Google Scholar 

  37. Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm? Ecology, 74, 1659–1673.

    Article  Google Scholar 

  38. Legendre, P., & Fortin, M.-J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80, 107–138.

    Article  Google Scholar 

  39. Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280.

    Article  Google Scholar 

  40. Legendre, P., & Legendre, L. (1998). Numerical ecology, second English ed (p. 853). Amsterdam: Elsevier Science BV.

    Google Scholar 

  41. Lennon, J. J., Greenwood, J. J. D., & Turner, J. R. G. (2000). Bird diversity and environmental gradients in Britain: a test of the species–energy hypothesis. The Journal of Animal Ecology, 69, 581–598.

    Article  Google Scholar 

  42. Lepš, J., & Šmilauer, P. (2003). Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press. pp. 269.

    Google Scholar 

  43. Marra, P. P., Francis, C. M., Mulvihill, R. S., & Moore, F. R. (2005). The influence of climate on the timing and rate of spring bird migration. Oecologia, 142, 307–315.

    Article  Google Scholar 

  44. Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Mücher, C. A., & Watkins, J. W. (2005). A climatic stratification of the environment of Europe. Global Ecology and Biogeography, 14, 549–563.

    Article  Google Scholar 

  45. Mitchell, T.D., Carter, T.R., Jones, P.D., Hulme, M., New M. (2004). A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper no. 55. Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, UK.

  46. Montgomery, D. C., & Peck, E. A. (1982). Introduction to linear regression analysis. New York: Wiley. 504.

    Google Scholar 

  47. Murphy, M. T. (2003). Avian population trends within the evolving agricultural landscapes of eastern and central United States. The Auk, 120, 20–34.

    Article  Google Scholar 

  48. Oindo, B. O., & Skidmore, A. K. (2002). Interannual variability of NDVI and species richness in Kenya. International Journal of Remote Sensing, 23(2), 285–298.

    Article  Google Scholar 

  49. Pautasso, M., & Gaston, K. J. (2005). Resources and global avian assemblage structure in forests. Ecology Letters, 8, 282–289.

    Article  Google Scholar 

  50. Peres-Neto, P. R., Legendre, P., Dray, S., & Borcard, D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology, 87, 2614–2625.

    Article  Google Scholar 

  51. Phillips, L. B., Hansen, A. J., & Flather, C. H. (2008). Evaluating the species energy relationship with the newest measures of ecosystem energy: NDVI versus MODIS primary production. Remote Sensing of Environment, 112, 3538–3549.

    Article  Google Scholar 

  52. Pimm, S. L., & Brown, J. H. (2004). Domains of diversity. Science, 304, 831–833.

    Article  CAS  Google Scholar 

  53. Reed, B. C., Brown, J. F., VanderZee, D., Loveland, T. R., Merchant, J. W., & Ohlen, D. O. (1994). Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 5, 703–714.

    Article  Google Scholar 

  54. Schwartz, M. D. (1998). Green Wave phenology. Nature, 394, 839–840.

    Google Scholar 

  55. Siriwardena, G. M., Baillie, S. R., Buckland, S. T., Fewster, R. M., Marchant, J. H., & Wilson, J. D. (1998). Trends in the abundance of farmland birds: a quantitative comparison of smoothed Common Birds Census indices. Journal of Applied Ecology, 35, 24–43.

    Article  Google Scholar 

  56. Ter Braak, C. F. J. (1987). CANOCO—a FORTRAN Program for CANOnical Community Ordination by [partial] [detrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 3.1). Agriculture Mathematics Group: Wageningen.

    Google Scholar 

  57. ter Braak, C. J. F. (1994). Canonical community ordination. Part I: basic theory and linear methods. Ecoscience, 1, 127–140.

    Google Scholar 

  58. Thorup, K., Tottrup, A. P., & Rahbek, C. (2007). Patterns of phenological changes in migratory birds. Oecologia, 151, 697–703.

    Article  Google Scholar 

  59. Totland, Ǿ., & Nylehn, J. (1998). Assessment of the effect of environmental change on the performance and density of Bistoria Vivipara: the use of multivariate analysis and experimental manipulation. Journal of Ecology, 86, 989–998.

    Article  Google Scholar 

  60. Tucker, G. M., & Heath, M. F. (1994). Birds in Europe. Their conservation status. Birdlife conservation series no. 3. Cambridge: Birdlife International.

    Google Scholar 

  61. Wright, D. H. (1983). Species-energy theory, an extension of species-area theory. Oikos, 41, 496–506.

    Article  Google Scholar 

Download references

Acknowledgement

The authors express their great thanks to Wolfgang Mehl from EC JRC, Ispra for his comments and programming skills. Furthermore, we are most grateful to the EBCC, and for Richard Gregory for providing the data and allowing us to use it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Ivits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivits, E., Buchanan, G., Olsvig-Whittaker, L. et al. European Farmland Bird Distribution Explained by Remotely Sensed Phenological Indices. Environ Model Assess 16, 385–399 (2011). https://doi.org/10.1007/s10666-011-9251-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-011-9251-9

Keywords

Navigation