Skip to main content

Advertisement

Log in

Zoning a Protected Area: Proposal Based on a Multi-thematic Approach and Final Decision

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The Madrid Regional Government (Central Spain) proposes a zone of the Guadarrama Mountains to be declared as a National Park. This paper reports on the zoning method developed to this end. The procedure followed considers compatibility of land uses with landscape characteristics and proposes protecting a part of the zone through declaration of National Park status and declaring another part as a Regional Park. The approach is based upon a multivariate environmental analysis aimed at zoning for optimal location of potential activities. The zoning permits the design of protected areas following the criteria underlying the declaration of these two categories in accordance with the Spanish environmental legislation in force. A practical tool for policy decision-making is provided. However, the final decision taken by policymakers in the design and zoning of protected areas differed from the model output used by the scientists. This is discussed in the paper to illustrate the interactions between political decision-making and scientific modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oldfield, T. E. E., Smith, R. J., Harrop, S. R., & Leader-Williams, N. (2004). A gap analysis of terrestrial protected areas in England and its implications for conservation policy. Biological Conservation, 120, 303–309.

    Article  Google Scholar 

  2. Kalamandeen, M., & Gillson, L. (2007). Demything “wilderness”: implications for protected area designation and management. Biodiversity and Conservation, 16, 165–182.

    Article  Google Scholar 

  3. McNeely, J. (1994). Protected areas for the 21st century: working to provide benefits to society. Biodiversity and Conservation, 3, 390–405.

    Article  Google Scholar 

  4. IUCN. (1994). Guidelines for protected area management categories. Gland: IUCN.

    Google Scholar 

  5. May, R. M. (1994). Ecological science and the management of protected areas. Biodiversity and Conservation, 3, 437–448.

    Article  Google Scholar 

  6. Schmitz, M. F., Ruiz-Labourdette, D., Sañudo, P. F., Montes, C., & Pineda, F. D. (2006). Participation of visitors in the management desing of protected natural areas. In F. D. Pineda & C. Brebbia (Eds.), Sustainable tourism II (pp. 139–148). Southhampton: Wit Press.

    Chapter  Google Scholar 

  7. Roman, S. J., Dearden, P., & Rollins, R. (2007). Application of zoning and “Limits of Acceptable Change” to manage snorkelling tourism. Environmental Management, 39, 819–830.

    Article  Google Scholar 

  8. Gaston, K. J., Charman, K., Jackson, S. F., Armsworth, P. R., Bonn, A., Briers, et al. (2006). The ecological effectiveness of protected areas: the United Kingdom. Biological Conservation, 132, 76–87.

    Article  Google Scholar 

  9. Higgs, A. J., & Usher, M. B. (1980). Should nature reserves be large or small? Nature, 285, 568–569.

    Article  Google Scholar 

  10. Götmark, F., & Nillson, C. (1992). Criteria used for protection of natural areas in Sweden 1909-1986. Conservation Biology, 6, 220–231.

    Article  Google Scholar 

  11. Lamberson, R. H., Noon, B. R., Voss, C., & McKelvey, K. S. (1994). Reserve design for territorial species: the effects of patch size and spacing on the viability of the northern spotted owl. Conservation Biology, 8, 185–195.

    Article  Google Scholar 

  12. Belbin, L. (1995). A multivariate approach to the selection of biological reserves. Biodiversity and Conservation, 4, 951–963.

    Article  Google Scholar 

  13. Cabeza, M., & Moilanen, A. (2001). Design of reserve nerworks and the persistente of biodiversity. Trends in Ecology and Evolution, 16, 242–248.

    Article  Google Scholar 

  14. Rothley, K. D., Berger, C. N., González, C., Webster, E. M., & Rubenstein, D. I. (2004). Combining strategies to select reserves in fragmented landscapes. Conservation Biology, 18, 1121–1131.

    Article  Google Scholar 

  15. Jackson, S. F., Kershaw, M., & Gaston, K. J. (2004). The performance of procedures for selecting conservation areas: waterbirds in the UK. Biological Conservation, 118, 261–270.

    Article  Google Scholar 

  16. Fischer, D. T., & Church, R. L. (2005). The SITES reserve selection system: a critical review. Environmental Modeling and Assessment, 10, 215–228.

    Article  Google Scholar 

  17. Verdiell, A., Sabatini, M., Maciel, M. C., & Rodríguez Iglesias, R. M. (2005). A mathematical model for zoning of protected natural areas. International Transactions in Operational Research, 12, 203–213.

    Article  Google Scholar 

  18. Strange, N., Thorse, B. J., & Bladt, J. (2006). Optimal reserve selection in a dynamic world. Biological Conservation, 131, 33–41.

    Article  Google Scholar 

  19. Salo, M., & Pyhälä, A. (2007). Exploring the gap between conservation science and protected area establishment in the Allpahuayo-Mishana National Reserve (Peruvian Amazonia). Environmental Conservation, 34, 23–32.

    Article  Google Scholar 

  20. Nebbia, A. J., & Zalba, S. M. (2007). Designig nature reserves: traditional criteria may act as misleading indicators of quality. Biodiversity and Conservation, 16, 223–233.

    Article  Google Scholar 

  21. Badola, R. (1998). Attitudes of local people towards conservation and alternatives to forest resources: a case study from the lower Himalayas. Biodiversity and Conservation, 7, 1245–1259.

    Article  Google Scholar 

  22. Walpole, M. J., & Goodwin, H. J. (2001). Local attitudes towards conservation and tourism around Komodo National Park, Indonesia. Environmental Conservation, 28, 160–166.

    Article  Google Scholar 

  23. Webb, E. L., Maliao, R. J., & Siar, S. V. (2004). Using local user perceptions to evaluate outcomes of protected area management in the Sagay Marine reserve, Philippines. Environmental Conservation, 31, 138–148.

    Article  Google Scholar 

  24. Winter, C., & Lockwood, M. (2005). A model for measuring natural area values and park preferences. Environmental Conservation, 32, 270–278.

    Article  Google Scholar 

  25. Spiteri, A., & Nepal, S. K. (2006). Incentive-based conservation programs in developing countries: a review of some key issues and suggestions for improvements. Environmental Management, 37, 1–14.

    Article  Google Scholar 

  26. Lockwood, M., Bos, D. G., & Glazebrook, H. (1997). Integrated protected area selection in Australian biogeographic regions. Environmental Management, 21, 395–404.

    Article  Google Scholar 

  27. Ashley, R., Russell, D., & Swallow, B. (2006). The policy terrain in protected area landscapes: challenges for agroforestry in integrated landscape conservation. Biodiversity and Conservation, 15, 663–689.

    Article  Google Scholar 

  28. Sayer, J., Campbell, B., Petheram, L., Aldrich, M., Ruiz, M., Endamana, D., et al. (2007). Assessing environment and development outcomes in conservation landscapes. Biodiversity and Conservation, 16, 2677–2694.

    Article  Google Scholar 

  29. Chave, J., Wiegand, K., & Levin, S. (2002). Spatial and biological aspects of reserve design. Environmental Modeling and Assessment, 7, 115–122.

    Article  Google Scholar 

  30. Hassan, R., Scholes, R., & Ash, N. (Eds.). (2005). Ecosystems services and human well-being: current state and trends. Washington, DC: Island press.

    Google Scholar 

  31. Kingsland, S. E. (2002). Creating a science of nature reserve design: perspectives from history. Environmental Modeling and Assessment, 7, 61–69.

    Article  Google Scholar 

  32. Snyder, S. A., Haight, R. G., & ReVelle, C. (2004). A scenario optimization model for dynamic reserve site selection. Environmental Modeling and Assessment, 9, 179–187.

    Article  Google Scholar 

  33. Nijkamp, P., Rietveld, P., & Voogd, H. (1990). Multicriteria evaluation in physical planning. Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  34. Montalvo, J., Ramírez, L., De Pablo, C. T. L., & Pineda, F. D. (1993). Impact minimization through environmentally based site selection: a multivariate approach. Journal of Environmental Management, 38, 13–25.

    Article  Google Scholar 

  35. Brown, K., Adger, W. N., Tompkins, E., Bacon, P., Shim, D., & Young, K. (2001). Trade-off analysis for marine protected area management. Ecological Economics, 37, 417–434.

    Article  Google Scholar 

  36. Bruce, E. M., & Eliot, I. G. (2006). A spatial model for marine park zoning. Coastal Management, 34, 17–38.

    Article  Google Scholar 

  37. Samarakoon, M., & Rowan, J. S. (2008). A critical review of environmental impact statements in Sri Lanka with particular reference to ecological impact assessment. Environmental Management, 41, 441–460.

    Article  Google Scholar 

  38. Thorhallsdottir, T. E. (2007). Environment and energy in Iceland: a comparative analysis of values and impacts. Environmental Impact Assessment Review, 27(6), 522–544.

    Article  Google Scholar 

  39. García Delgado, J. L. (Ed.). (2007). Estructura económica de Madrid. Madrid: Civitas.

    Google Scholar 

  40. McNeil, J. R. (1992). The mountains of the mediterranean world. An environmental history. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  41. Rivas-Martínez, S., & Loidi, J. (1999). Bioclimatology of the Iberian Peninsula. Itinera Geobotanica, 13, 41–48.

    Google Scholar 

  42. Sainz, H., & Moreno, J. C. (2002). Flora vascular endémica española. In F. D. Pineda, J. M. De Miguel, J. M. Casado, & J. Montalvo (Eds.), La Diversidad Biológica de España (pp. 175–195). Madrid: Prentice Hall.

    Google Scholar 

  43. Väre, H., Lampinen, C., Humphries, C., & Williams, P. (2003). Taxonomic diversity of vascular plants in the European alpine areas. In L. Nagy, G. Grabherr, Ch Körner, & D. B. A. Thompson (Eds.), Alpine biodiversity in Europe. Ecological studies 167 (pp. 133–148). Berlin: Springer.

    Google Scholar 

  44. Casado, M. A., Martín, B., Gil, T., Jiménez Escobar, M. D., & Jiménez Bailón, L. (2006). Banco de datos de la Biodiversidad de la Comunidad de Madrid. Madrid: Centro de Investigaciones Ambientales de la Comunidad de Madrid F.G.Bernáldez.

    Google Scholar 

  45. Pineda, F. D., & Montalvo, J. (1995). Dehesa systems in the western mediterranean. Biological diversity in traditional land use systems. In P. Halladay & D. A. Gilmour (Eds.), Conserving biodiversity outside protected areas. The role of traditional agro-ecosystems (pp. 107–122). Gland: Forest Conservation Programme, IUCN.

    Google Scholar 

  46. Pineda, F. D. (1990). Perspectives on research into Spanish open woodlands (dehesa): some recent ecological experiences. Giornale Botanico Italiano, 124, 311–320.

    Google Scholar 

  47. Martín Vicente, A., & Fernández Alés, R. (2006). Long term persistence of dehesas. Evidence from history. Agroforestry Systems, 67, 19–28.

    Article  Google Scholar 

  48. Schmitz, M. F., Sánchez, I., & de Aranzabal, I. (2007). Influence of management regimes of adjacent land uses on the woody plant richness of hedgerows in Spanish cultural landscapes. Biological Conservation, 135, 542–554.

    Article  Google Scholar 

  49. Schmitz, M. F., De Aranzabal, I., & Pineda, F. D. (2007). Spatial analysis of visitor preferences in the outdoor recreational niche of Mediterranean cultural landscapes. Environmental Conservation, 34, 300–312.

    Article  Google Scholar 

  50. Calvo, P. (Ed.). (2002). Sierra de Guadarrama: un reto de protección integral. Madrid: Fundación de Investigación y Desarrollo Ambiental (FIDA).

    Google Scholar 

  51. Valenzuela, M. (1977). Urbanización y crisis rural en la Sierra de Madrid. Madrid: Instituto de Estudios de Administración Local.

    Google Scholar 

  52. Manning, R. E., & Lawson, S. R. (2002). Carrying capacity as “informed judgement”: the values of science and the science of values. Environmental Management, 30, 157–168.

    Article  Google Scholar 

  53. Schwartz, M. (Ed.). (2005). Encyclopedia of coastal science. Berlin: Springer.

    Google Scholar 

  54. Moore, S. A., & Polley, A. (2007). Defining indicators and standards for tourism impacts in protected areas: Cape Range National Park, Australia. Environmental Management, 39, 291–300.

    Article  Google Scholar 

  55. Seibert, P. M. (1980). Ökologische Bewertung von homogenen Landschaftsteilen. Ökosistemen und Pflanzengesellschaflen. Berichte der ANL, 4, 10–23.

    Google Scholar 

  56. Kirby, K. (1986). Forest and woodland evaluation. In M. B. Usher (Ed.), Wildlife conservation and evaluation (pp. 201–369). London: Chapman & Hill Publ.

    Google Scholar 

  57. Díaz, S., Tilman, D., Fargione, J., Chapin, F. S., III, Dirzo, R., Kitzberger, T., et al. (2005). Biodiversity regulation of ecosystems services. In R. Hassan, R. Scholes, & N. Ash (Eds.), Ecosystems services and human well-being: current state and trends (pp. 297–329). Washington, DC: Island Press.

    Google Scholar 

  58. Loidi, J., Ortega, M., & Orrantia, O. (2007). Vegetation science and the implementation of the Habitat Directive in Spain: up-to-now experiences and further development to provide tools for management. Fitosociologia, 44(2), 9–16.

    Google Scholar 

  59. Krassilnikov, P., Carré, F., & Montanerella, L. (Eds.). (2008). Soil geography and geostatistics. JRC scientific and technical reports. Luxembourg: European Commission.

    Google Scholar 

  60. IUCN (2008). Red list of endangered animals. http://www.iucnredlist.org/mammals. Accessed 10 Jan 2009.

  61. ArcGis. (2006). ArcGis 9.2. Los Angeles: ESRI, Enviromental Systems Research Institute.

    Google Scholar 

  62. Dietrich, W. E., & Montgomery, D. (1998). Shalstab: A digital terrain model for mapping shallow landslide potential. Washington: National Council of the paper industry for air and stream improvement. Technical Report, 26 pp

  63. Monturiol, F., & Alcalá del Olmo, L. (1990). Mapa de asociaciones de suelos de la Comunidad de Madrid. Madrid: Instituto de Edafología y Biología Vegetal, C.S.I.C.

    Google Scholar 

  64. Rivas-Martínez, S. (1987). Mapa de series de vegetación de España. Madrid: Publs. Ministerio de Agricultura, Pesca y Alimentación.

    Google Scholar 

  65. Crist, P. J., Kohley, T. W., & Oakleaf, J. (2000). Assessing land-use impacts on biodiversity using an expert systems tool. Landscape Ecology, 15, 47–62.

    Article  Google Scholar 

  66. Reynoldson, T. B., Norris, R. H., Resh, V. H., Day, K. E., & Rosenbeg, D. M. (1997). The reference condition: a comparison of multimetric and multivariate approach to asses water quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society, 16(4), 833–852.

    Article  Google Scholar 

  67. Bayley, R. C., Norris, R. H., & Reynoldson, T. B. (2004). Bioassessment of freshwater ecosystems: using the reference condition approach. Boston: Kluwer Academic Publishers.

    Google Scholar 

  68. Stoddar, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K., & Norris, R. H. (2006). Setting expectation for ecological condition of running waters: the concept of reference conditions. Ecological Applications, 16, 1267–1276.

    Article  Google Scholar 

  69. Angradi, T. R., Pearson, M. S., Jicha, T. M., Taylor, D. L., Bolgrien, D. W., Moffett, M. F., et al. (2009). Using stressor gradients to determine reference expectations for great river fish assemblages. Ecological Indicators, 9, 748–764.

    Article  Google Scholar 

  70. EUROPARC. (2006). Anuario EUROPARC-España del estado de los espacios naturales protegidos. Madrid: Fundación F.G. Bernáldez.

    Google Scholar 

  71. Lope de Toledo, J. M. (Ed.). (1999). Plan Director de la Red de Parques Nacionales. Madrid: Ministerio de Medio Ambiente.

    Google Scholar 

  72. McDonnell, M. D., Possingham, H. P., Ball, I. R., & Cousins, E. A. (2002). Mathematical methods for spatially reserve design. Environmental Modeling and Assessment, 7, 107–114.

    Article  Google Scholar 

  73. Williams, J. C., & ReVelle, C. S. (1997). Applying mathematical programming to reserve selection. Environmental Modeling and Assessment, 2, 167–175.

    Article  Google Scholar 

  74. Önal, H., & Briers, R. A. (2005). Designing a conservation network with minimal fragmentation: a linear integer programming approach. Environmental Modeling and Assessment, 10, 193–202.

    Article  Google Scholar 

  75. Yip, J. Y., Corlett, R. T., & Dudgeon, D. (2006). Selecting small reserves in a human-dominated landscape: a case study of Hong Kong, China. Journal of Environmental Management, 78, 86–96.

    Article  Google Scholar 

  76. Jacobi, S. K., ReVelle, C. S., Pressey, R. L., & Williams, J. C. (2007). Novel operations research methods for efficiently determining irreplaceable sites for conservation. Environmental Modeling and Assessment, 12, 91–103.

    Article  Google Scholar 

  77. Arthur, J. L., Haight, R. G., Montgomery, C. A., & Polasky, S. (2002). Analysis of the threshold and expected coverage approaches to the probabilistic reserve site selection problem. Environmental Modeling and Assessment, 7, 81–89.

    Article  Google Scholar 

  78. Pressey, R. J., Possingham, H. P., & Margules, C. R. (1996). Optimality in reserve selection algorithms: when does it matter and how much? Biological Conservation, 76, 259–267.

    Article  Google Scholar 

  79. ReVelle, C. S., Williams, J. C., & Boland, J. J. (2002). Counterpart models in facility location science and reserve selection science. Environmental Modeling and Assessment, 7, 71–80.

    Article  Google Scholar 

  80. Sabatini, M. C., Verdiell, A., Rodríguez Iglesias, R. M., & Vidal, M. (2007). A quantitative method for zoning of protected areas and its spatial ecological implications. Journal of Environmental Management, 83, 198–206.

    Article  Google Scholar 

  81. Pregerning, M. (2006). Transdisciplinarity viewed from afar: science-policy assessments as forums for the creation of transdisciplinary knowledge. Science and Public Policy, 33, 445–455.

    Article  Google Scholar 

  82. Moser, S. C. (2005). Impact assessments and policy responses to sea-level rise in three US states: an exploration of human-dimension uncertainties. Global Environmental Change, 15, 353–369.

    Article  Google Scholar 

  83. McHarg, I. L. (1969). Design with nature. Philadelphia: The Falcon Press.

    Google Scholar 

  84. Warner, M. H., & Preston, E. H. (1973). A review of environmental impact assesment methodologies. Washington: Battelle Columbus Laboratory and EPA.

    Google Scholar 

  85. Kwak, S., Yoo, S., & Shin, C. (2002). A multiattribute index for assessing environmental impacts of regional development projects: a case study of Korea. Environmental Management, 29, 301–309.

    Article  Google Scholar 

  86. Van Eetvelde, V., & Antrop, M. (2009). A stepwise multi-scaled landscape typology and characterisation for trans-regional integration applied on the federal state of Belgium. Landscape and Urban Planning, 91, 160–170.

    Article  Google Scholar 

  87. Wright, J., ReVelle, C. H., & Cohon, J. (1983). A multiobjective integer programming model for the land acquisition problem. Regional Science and Urban Economics, 13, 31–53.

    Article  Google Scholar 

  88. Church, R., Gerrard, R., Hollander, A., & Stoms, D. (2000). Understandig the tradeoffs between site quality and species presence in reserve site selection. Forest Science, 46, 157–167.

    Google Scholar 

  89. Cabeza, M., & Moilanen, A. (2003). Site-selection algorithms and habitat loss. Conservation Biology, 17, 1402–1413.

    Article  Google Scholar 

  90. Nalle, D. J., Arthur, J. L., & Sessions, J. (2002). Designing compact and contiguous reserve networks with a hybrid heuristic algorhitm. Fores Science, 48, 59–68.

    Google Scholar 

  91. Fischer, D. T., & Church, R. L. (2003). Clustering and compactness in reserve site selection: an extension of the biodiversity management area selection model. Forest Science, 49, 555–565.

    Google Scholar 

  92. Moilanen, A. (2005). Methods for reserve selection: interior point search. Biological Conservation, 124, 485–492.

    Article  Google Scholar 

  93. Williams, J. C. Re Velle, CH, S., & Levin, S. A. (2005). Spatial attributes and reserve design models: a review. Environmental Modeling and Assessment, 10, 163–181.

    Article  Google Scholar 

  94. Moilanen, A., & Wintle, B. A. (2006). Uncertainty analysis favours selection of spatially aggregated reserve networks. Biological Conservation, 129, 427–434.

    Article  Google Scholar 

  95. Moilanen, A., Wintle, B. A., Elith, J., & Burgman, M. (2006). Uncertainty analysis for regional-scale reserve selection. Conservation Biology, 20, 1688–1697.

    Article  Google Scholar 

  96. Moilanen, A. (2007). Landscape zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biological Conservation, 134, 571–579.

    Article  Google Scholar 

  97. Tischendorf, L., & Farhig, L. (2000). On the usage and measurement of landscape connectivity. Oikos, 90, 7–19.

    Article  Google Scholar 

  98. IDRISI. (2006). IDRISI 15. Worcester: The Andes Edition, Clark University.

    Google Scholar 

  99. Farrell, A. E., Van Deveer, S., & Jäger, J. (2001). Environmental assessments: four under-appreciated elements of design. Global Environmental Change, 11, 311–333.

    Article  Google Scholar 

  100. Farrell, A. E., & Jäger, J. (Eds.). (2005). Assessments of regional and global environmental risks: designing processes for the effective use of science in decision making. Washington: RFF Press.

    Google Scholar 

  101. Wolosoff, S. E., & Endreny, T. A. (2002). Scientist and policy-maker response types and times in suburban watersheds. Environmental Management, 29, 729–735.

    Article  Google Scholar 

  102. Waterton, C. (2005). “Scientists” conceptions of the boundaries between their own research and policy. Science and Public Policy, 32, 435–444.

    Article  Google Scholar 

  103. De Aranzabal, I., Schmitz, M. F., Aguilera, & Pineda, F. D. (2008). Recreation suitability analysis. Application in protected and non-protected areas. In C. Brebbia & F. D. Pineda (Eds.), Sustainable tourism III (pp. 223–230). Southampton: WIT Press.

    Chapter  Google Scholar 

  104. Martin, S. R., McCool, S. F., & Lucas, R. C. (1989). Wilderness campsite impacts: do managers and visitors see them the same? Environmental Management, 13, 623–629.

    Article  Google Scholar 

  105. Buisson, E., & Dutoit, T. (2006). Creation of the natural reserve of La Crau: implications for the creation and management of protected areas. Journal of Environmental Management, 80, 318–326.

    Article  Google Scholar 

  106. Dasgupta, A. K., & Pearce, D. W. (1972). Cost benefit analysis. New York: Macmillan.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Project 239/03-34-03 of the Ministerio de Medio Ambiente (Madrid), the F.G. Bernáldez Foundation (Madrid) and the Consejería de Medio Ambiente, Comunidad Autónoma de Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María F. Schmitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Labourdette, D., Schmitz, M.F., Montes, C. et al. Zoning a Protected Area: Proposal Based on a Multi-thematic Approach and Final Decision. Environ Model Assess 15, 531–547 (2010). https://doi.org/10.1007/s10666-010-9223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-010-9223-5

Keywords

Navigation