Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Zoning a Protected Area: Proposal Based on a Multi-thematic Approach and Final Decision

Abstract

The Madrid Regional Government (Central Spain) proposes a zone of the Guadarrama Mountains to be declared as a National Park. This paper reports on the zoning method developed to this end. The procedure followed considers compatibility of land uses with landscape characteristics and proposes protecting a part of the zone through declaration of National Park status and declaring another part as a Regional Park. The approach is based upon a multivariate environmental analysis aimed at zoning for optimal location of potential activities. The zoning permits the design of protected areas following the criteria underlying the declaration of these two categories in accordance with the Spanish environmental legislation in force. A practical tool for policy decision-making is provided. However, the final decision taken by policymakers in the design and zoning of protected areas differed from the model output used by the scientists. This is discussed in the paper to illustrate the interactions between political decision-making and scientific modelling.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Oldfield, T. E. E., Smith, R. J., Harrop, S. R., & Leader-Williams, N. (2004). A gap analysis of terrestrial protected areas in England and its implications for conservation policy. Biological Conservation, 120, 303–309.

  2. 2.

    Kalamandeen, M., & Gillson, L. (2007). Demything “wilderness”: implications for protected area designation and management. Biodiversity and Conservation, 16, 165–182.

  3. 3.

    McNeely, J. (1994). Protected areas for the 21st century: working to provide benefits to society. Biodiversity and Conservation, 3, 390–405.

  4. 4.

    IUCN. (1994). Guidelines for protected area management categories. Gland: IUCN.

  5. 5.

    May, R. M. (1994). Ecological science and the management of protected areas. Biodiversity and Conservation, 3, 437–448.

  6. 6.

    Schmitz, M. F., Ruiz-Labourdette, D., Sañudo, P. F., Montes, C., & Pineda, F. D. (2006). Participation of visitors in the management desing of protected natural areas. In F. D. Pineda & C. Brebbia (Eds.), Sustainable tourism II (pp. 139–148). Southhampton: Wit Press.

  7. 7.

    Roman, S. J., Dearden, P., & Rollins, R. (2007). Application of zoning and “Limits of Acceptable Change” to manage snorkelling tourism. Environmental Management, 39, 819–830.

  8. 8.

    Gaston, K. J., Charman, K., Jackson, S. F., Armsworth, P. R., Bonn, A., Briers, et al. (2006). The ecological effectiveness of protected areas: the United Kingdom. Biological Conservation, 132, 76–87.

  9. 9.

    Higgs, A. J., & Usher, M. B. (1980). Should nature reserves be large or small? Nature, 285, 568–569.

  10. 10.

    Götmark, F., & Nillson, C. (1992). Criteria used for protection of natural areas in Sweden 1909-1986. Conservation Biology, 6, 220–231.

  11. 11.

    Lamberson, R. H., Noon, B. R., Voss, C., & McKelvey, K. S. (1994). Reserve design for territorial species: the effects of patch size and spacing on the viability of the northern spotted owl. Conservation Biology, 8, 185–195.

  12. 12.

    Belbin, L. (1995). A multivariate approach to the selection of biological reserves. Biodiversity and Conservation, 4, 951–963.

  13. 13.

    Cabeza, M., & Moilanen, A. (2001). Design of reserve nerworks and the persistente of biodiversity. Trends in Ecology and Evolution, 16, 242–248.

  14. 14.

    Rothley, K. D., Berger, C. N., González, C., Webster, E. M., & Rubenstein, D. I. (2004). Combining strategies to select reserves in fragmented landscapes. Conservation Biology, 18, 1121–1131.

  15. 15.

    Jackson, S. F., Kershaw, M., & Gaston, K. J. (2004). The performance of procedures for selecting conservation areas: waterbirds in the UK. Biological Conservation, 118, 261–270.

  16. 16.

    Fischer, D. T., & Church, R. L. (2005). The SITES reserve selection system: a critical review. Environmental Modeling and Assessment, 10, 215–228.

  17. 17.

    Verdiell, A., Sabatini, M., Maciel, M. C., & Rodríguez Iglesias, R. M. (2005). A mathematical model for zoning of protected natural areas. International Transactions in Operational Research, 12, 203–213.

  18. 18.

    Strange, N., Thorse, B. J., & Bladt, J. (2006). Optimal reserve selection in a dynamic world. Biological Conservation, 131, 33–41.

  19. 19.

    Salo, M., & Pyhälä, A. (2007). Exploring the gap between conservation science and protected area establishment in the Allpahuayo-Mishana National Reserve (Peruvian Amazonia). Environmental Conservation, 34, 23–32.

  20. 20.

    Nebbia, A. J., & Zalba, S. M. (2007). Designig nature reserves: traditional criteria may act as misleading indicators of quality. Biodiversity and Conservation, 16, 223–233.

  21. 21.

    Badola, R. (1998). Attitudes of local people towards conservation and alternatives to forest resources: a case study from the lower Himalayas. Biodiversity and Conservation, 7, 1245–1259.

  22. 22.

    Walpole, M. J., & Goodwin, H. J. (2001). Local attitudes towards conservation and tourism around Komodo National Park, Indonesia. Environmental Conservation, 28, 160–166.

  23. 23.

    Webb, E. L., Maliao, R. J., & Siar, S. V. (2004). Using local user perceptions to evaluate outcomes of protected area management in the Sagay Marine reserve, Philippines. Environmental Conservation, 31, 138–148.

  24. 24.

    Winter, C., & Lockwood, M. (2005). A model for measuring natural area values and park preferences. Environmental Conservation, 32, 270–278.

  25. 25.

    Spiteri, A., & Nepal, S. K. (2006). Incentive-based conservation programs in developing countries: a review of some key issues and suggestions for improvements. Environmental Management, 37, 1–14.

  26. 26.

    Lockwood, M., Bos, D. G., & Glazebrook, H. (1997). Integrated protected area selection in Australian biogeographic regions. Environmental Management, 21, 395–404.

  27. 27.

    Ashley, R., Russell, D., & Swallow, B. (2006). The policy terrain in protected area landscapes: challenges for agroforestry in integrated landscape conservation. Biodiversity and Conservation, 15, 663–689.

  28. 28.

    Sayer, J., Campbell, B., Petheram, L., Aldrich, M., Ruiz, M., Endamana, D., et al. (2007). Assessing environment and development outcomes in conservation landscapes. Biodiversity and Conservation, 16, 2677–2694.

  29. 29.

    Chave, J., Wiegand, K., & Levin, S. (2002). Spatial and biological aspects of reserve design. Environmental Modeling and Assessment, 7, 115–122.

  30. 30.

    Hassan, R., Scholes, R., & Ash, N. (Eds.). (2005). Ecosystems services and human well-being: current state and trends. Washington, DC: Island press.

  31. 31.

    Kingsland, S. E. (2002). Creating a science of nature reserve design: perspectives from history. Environmental Modeling and Assessment, 7, 61–69.

  32. 32.

    Snyder, S. A., Haight, R. G., & ReVelle, C. (2004). A scenario optimization model for dynamic reserve site selection. Environmental Modeling and Assessment, 9, 179–187.

  33. 33.

    Nijkamp, P., Rietveld, P., & Voogd, H. (1990). Multicriteria evaluation in physical planning. Amsterdam: Elsevier Science Publishers.

  34. 34.

    Montalvo, J., Ramírez, L., De Pablo, C. T. L., & Pineda, F. D. (1993). Impact minimization through environmentally based site selection: a multivariate approach. Journal of Environmental Management, 38, 13–25.

  35. 35.

    Brown, K., Adger, W. N., Tompkins, E., Bacon, P., Shim, D., & Young, K. (2001). Trade-off analysis for marine protected area management. Ecological Economics, 37, 417–434.

  36. 36.

    Bruce, E. M., & Eliot, I. G. (2006). A spatial model for marine park zoning. Coastal Management, 34, 17–38.

  37. 37.

    Samarakoon, M., & Rowan, J. S. (2008). A critical review of environmental impact statements in Sri Lanka with particular reference to ecological impact assessment. Environmental Management, 41, 441–460.

  38. 38.

    Thorhallsdottir, T. E. (2007). Environment and energy in Iceland: a comparative analysis of values and impacts. Environmental Impact Assessment Review, 27(6), 522–544.

  39. 39.

    García Delgado, J. L. (Ed.). (2007). Estructura económica de Madrid. Madrid: Civitas.

  40. 40.

    McNeil, J. R. (1992). The mountains of the mediterranean world. An environmental history. Cambridge: Cambridge University Press.

  41. 41.

    Rivas-Martínez, S., & Loidi, J. (1999). Bioclimatology of the Iberian Peninsula. Itinera Geobotanica, 13, 41–48.

  42. 42.

    Sainz, H., & Moreno, J. C. (2002). Flora vascular endémica española. In F. D. Pineda, J. M. De Miguel, J. M. Casado, & J. Montalvo (Eds.), La Diversidad Biológica de España (pp. 175–195). Madrid: Prentice Hall.

  43. 43.

    Väre, H., Lampinen, C., Humphries, C., & Williams, P. (2003). Taxonomic diversity of vascular plants in the European alpine areas. In L. Nagy, G. Grabherr, Ch Körner, & D. B. A. Thompson (Eds.), Alpine biodiversity in Europe. Ecological studies 167 (pp. 133–148). Berlin: Springer.

  44. 44.

    Casado, M. A., Martín, B., Gil, T., Jiménez Escobar, M. D., & Jiménez Bailón, L. (2006). Banco de datos de la Biodiversidad de la Comunidad de Madrid. Madrid: Centro de Investigaciones Ambientales de la Comunidad de Madrid F.G.Bernáldez.

  45. 45.

    Pineda, F. D., & Montalvo, J. (1995). Dehesa systems in the western mediterranean. Biological diversity in traditional land use systems. In P. Halladay & D. A. Gilmour (Eds.), Conserving biodiversity outside protected areas. The role of traditional agro-ecosystems (pp. 107–122). Gland: Forest Conservation Programme, IUCN.

  46. 46.

    Pineda, F. D. (1990). Perspectives on research into Spanish open woodlands (dehesa): some recent ecological experiences. Giornale Botanico Italiano, 124, 311–320.

  47. 47.

    Martín Vicente, A., & Fernández Alés, R. (2006). Long term persistence of dehesas. Evidence from history. Agroforestry Systems, 67, 19–28.

  48. 48.

    Schmitz, M. F., Sánchez, I., & de Aranzabal, I. (2007). Influence of management regimes of adjacent land uses on the woody plant richness of hedgerows in Spanish cultural landscapes. Biological Conservation, 135, 542–554.

  49. 49.

    Schmitz, M. F., De Aranzabal, I., & Pineda, F. D. (2007). Spatial analysis of visitor preferences in the outdoor recreational niche of Mediterranean cultural landscapes. Environmental Conservation, 34, 300–312.

  50. 50.

    Calvo, P. (Ed.). (2002). Sierra de Guadarrama: un reto de protección integral. Madrid: Fundación de Investigación y Desarrollo Ambiental (FIDA).

  51. 51.

    Valenzuela, M. (1977). Urbanización y crisis rural en la Sierra de Madrid. Madrid: Instituto de Estudios de Administración Local.

  52. 52.

    Manning, R. E., & Lawson, S. R. (2002). Carrying capacity as “informed judgement”: the values of science and the science of values. Environmental Management, 30, 157–168.

  53. 53.

    Schwartz, M. (Ed.). (2005). Encyclopedia of coastal science. Berlin: Springer.

  54. 54.

    Moore, S. A., & Polley, A. (2007). Defining indicators and standards for tourism impacts in protected areas: Cape Range National Park, Australia. Environmental Management, 39, 291–300.

  55. 55.

    Seibert, P. M. (1980). Ökologische Bewertung von homogenen Landschaftsteilen. Ökosistemen und Pflanzengesellschaflen. Berichte der ANL, 4, 10–23.

  56. 56.

    Kirby, K. (1986). Forest and woodland evaluation. In M. B. Usher (Ed.), Wildlife conservation and evaluation (pp. 201–369). London: Chapman & Hill Publ.

  57. 57.

    Díaz, S., Tilman, D., Fargione, J., Chapin, F. S., III, Dirzo, R., Kitzberger, T., et al. (2005). Biodiversity regulation of ecosystems services. In R. Hassan, R. Scholes, & N. Ash (Eds.), Ecosystems services and human well-being: current state and trends (pp. 297–329). Washington, DC: Island Press.

  58. 58.

    Loidi, J., Ortega, M., & Orrantia, O. (2007). Vegetation science and the implementation of the Habitat Directive in Spain: up-to-now experiences and further development to provide tools for management. Fitosociologia, 44(2), 9–16.

  59. 59.

    Krassilnikov, P., Carré, F., & Montanerella, L. (Eds.). (2008). Soil geography and geostatistics. JRC scientific and technical reports. Luxembourg: European Commission.

  60. 60.

    IUCN (2008). Red list of endangered animals. http://www.iucnredlist.org/mammals. Accessed 10 Jan 2009.

  61. 61.

    ArcGis. (2006). ArcGis 9.2. Los Angeles: ESRI, Enviromental Systems Research Institute.

  62. 62.

    Dietrich, W. E., & Montgomery, D. (1998). Shalstab: A digital terrain model for mapping shallow landslide potential. Washington: National Council of the paper industry for air and stream improvement. Technical Report, 26 pp

  63. 63.

    Monturiol, F., & Alcalá del Olmo, L. (1990). Mapa de asociaciones de suelos de la Comunidad de Madrid. Madrid: Instituto de Edafología y Biología Vegetal, C.S.I.C.

  64. 64.

    Rivas-Martínez, S. (1987). Mapa de series de vegetación de España. Madrid: Publs. Ministerio de Agricultura, Pesca y Alimentación.

  65. 65.

    Crist, P. J., Kohley, T. W., & Oakleaf, J. (2000). Assessing land-use impacts on biodiversity using an expert systems tool. Landscape Ecology, 15, 47–62.

  66. 66.

    Reynoldson, T. B., Norris, R. H., Resh, V. H., Day, K. E., & Rosenbeg, D. M. (1997). The reference condition: a comparison of multimetric and multivariate approach to asses water quality impairment using benthic macroinvertebrates. Journal of the North American Benthological Society, 16(4), 833–852.

  67. 67.

    Bayley, R. C., Norris, R. H., & Reynoldson, T. B. (2004). Bioassessment of freshwater ecosystems: using the reference condition approach. Boston: Kluwer Academic Publishers.

  68. 68.

    Stoddar, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K., & Norris, R. H. (2006). Setting expectation for ecological condition of running waters: the concept of reference conditions. Ecological Applications, 16, 1267–1276.

  69. 69.

    Angradi, T. R., Pearson, M. S., Jicha, T. M., Taylor, D. L., Bolgrien, D. W., Moffett, M. F., et al. (2009). Using stressor gradients to determine reference expectations for great river fish assemblages. Ecological Indicators, 9, 748–764.

  70. 70.

    EUROPARC. (2006). Anuario EUROPARC-España del estado de los espacios naturales protegidos. Madrid: Fundación F.G. Bernáldez.

  71. 71.

    Lope de Toledo, J. M. (Ed.). (1999). Plan Director de la Red de Parques Nacionales. Madrid: Ministerio de Medio Ambiente.

  72. 72.

    McDonnell, M. D., Possingham, H. P., Ball, I. R., & Cousins, E. A. (2002). Mathematical methods for spatially reserve design. Environmental Modeling and Assessment, 7, 107–114.

  73. 73.

    Williams, J. C., & ReVelle, C. S. (1997). Applying mathematical programming to reserve selection. Environmental Modeling and Assessment, 2, 167–175.

  74. 74.

    Önal, H., & Briers, R. A. (2005). Designing a conservation network with minimal fragmentation: a linear integer programming approach. Environmental Modeling and Assessment, 10, 193–202.

  75. 75.

    Yip, J. Y., Corlett, R. T., & Dudgeon, D. (2006). Selecting small reserves in a human-dominated landscape: a case study of Hong Kong, China. Journal of Environmental Management, 78, 86–96.

  76. 76.

    Jacobi, S. K., ReVelle, C. S., Pressey, R. L., & Williams, J. C. (2007). Novel operations research methods for efficiently determining irreplaceable sites for conservation. Environmental Modeling and Assessment, 12, 91–103.

  77. 77.

    Arthur, J. L., Haight, R. G., Montgomery, C. A., & Polasky, S. (2002). Analysis of the threshold and expected coverage approaches to the probabilistic reserve site selection problem. Environmental Modeling and Assessment, 7, 81–89.

  78. 78.

    Pressey, R. J., Possingham, H. P., & Margules, C. R. (1996). Optimality in reserve selection algorithms: when does it matter and how much? Biological Conservation, 76, 259–267.

  79. 79.

    ReVelle, C. S., Williams, J. C., & Boland, J. J. (2002). Counterpart models in facility location science and reserve selection science. Environmental Modeling and Assessment, 7, 71–80.

  80. 80.

    Sabatini, M. C., Verdiell, A., Rodríguez Iglesias, R. M., & Vidal, M. (2007). A quantitative method for zoning of protected areas and its spatial ecological implications. Journal of Environmental Management, 83, 198–206.

  81. 81.

    Pregerning, M. (2006). Transdisciplinarity viewed from afar: science-policy assessments as forums for the creation of transdisciplinary knowledge. Science and Public Policy, 33, 445–455.

  82. 82.

    Moser, S. C. (2005). Impact assessments and policy responses to sea-level rise in three US states: an exploration of human-dimension uncertainties. Global Environmental Change, 15, 353–369.

  83. 83.

    McHarg, I. L. (1969). Design with nature. Philadelphia: The Falcon Press.

  84. 84.

    Warner, M. H., & Preston, E. H. (1973). A review of environmental impact assesment methodologies. Washington: Battelle Columbus Laboratory and EPA.

  85. 85.

    Kwak, S., Yoo, S., & Shin, C. (2002). A multiattribute index for assessing environmental impacts of regional development projects: a case study of Korea. Environmental Management, 29, 301–309.

  86. 86.

    Van Eetvelde, V., & Antrop, M. (2009). A stepwise multi-scaled landscape typology and characterisation for trans-regional integration applied on the federal state of Belgium. Landscape and Urban Planning, 91, 160–170.

  87. 87.

    Wright, J., ReVelle, C. H., & Cohon, J. (1983). A multiobjective integer programming model for the land acquisition problem. Regional Science and Urban Economics, 13, 31–53.

  88. 88.

    Church, R., Gerrard, R., Hollander, A., & Stoms, D. (2000). Understandig the tradeoffs between site quality and species presence in reserve site selection. Forest Science, 46, 157–167.

  89. 89.

    Cabeza, M., & Moilanen, A. (2003). Site-selection algorithms and habitat loss. Conservation Biology, 17, 1402–1413.

  90. 90.

    Nalle, D. J., Arthur, J. L., & Sessions, J. (2002). Designing compact and contiguous reserve networks with a hybrid heuristic algorhitm. Fores Science, 48, 59–68.

  91. 91.

    Fischer, D. T., & Church, R. L. (2003). Clustering and compactness in reserve site selection: an extension of the biodiversity management area selection model. Forest Science, 49, 555–565.

  92. 92.

    Moilanen, A. (2005). Methods for reserve selection: interior point search. Biological Conservation, 124, 485–492.

  93. 93.

    Williams, J. C. Re Velle, CH, S., & Levin, S. A. (2005). Spatial attributes and reserve design models: a review. Environmental Modeling and Assessment, 10, 163–181.

  94. 94.

    Moilanen, A., & Wintle, B. A. (2006). Uncertainty analysis favours selection of spatially aggregated reserve networks. Biological Conservation, 129, 427–434.

  95. 95.

    Moilanen, A., Wintle, B. A., Elith, J., & Burgman, M. (2006). Uncertainty analysis for regional-scale reserve selection. Conservation Biology, 20, 1688–1697.

  96. 96.

    Moilanen, A. (2007). Landscape zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biological Conservation, 134, 571–579.

  97. 97.

    Tischendorf, L., & Farhig, L. (2000). On the usage and measurement of landscape connectivity. Oikos, 90, 7–19.

  98. 98.

    IDRISI. (2006). IDRISI 15. Worcester: The Andes Edition, Clark University.

  99. 99.

    Farrell, A. E., Van Deveer, S., & Jäger, J. (2001). Environmental assessments: four under-appreciated elements of design. Global Environmental Change, 11, 311–333.

  100. 100.

    Farrell, A. E., & Jäger, J. (Eds.). (2005). Assessments of regional and global environmental risks: designing processes for the effective use of science in decision making. Washington: RFF Press.

  101. 101.

    Wolosoff, S. E., & Endreny, T. A. (2002). Scientist and policy-maker response types and times in suburban watersheds. Environmental Management, 29, 729–735.

  102. 102.

    Waterton, C. (2005). “Scientists” conceptions of the boundaries between their own research and policy. Science and Public Policy, 32, 435–444.

  103. 103.

    De Aranzabal, I., Schmitz, M. F., Aguilera, & Pineda, F. D. (2008). Recreation suitability analysis. Application in protected and non-protected areas. In C. Brebbia & F. D. Pineda (Eds.), Sustainable tourism III (pp. 223–230). Southampton: WIT Press.

  104. 104.

    Martin, S. R., McCool, S. F., & Lucas, R. C. (1989). Wilderness campsite impacts: do managers and visitors see them the same? Environmental Management, 13, 623–629.

  105. 105.

    Buisson, E., & Dutoit, T. (2006). Creation of the natural reserve of La Crau: implications for the creation and management of protected areas. Journal of Environmental Management, 80, 318–326.

  106. 106.

    Dasgupta, A. K., & Pearce, D. W. (1972). Cost benefit analysis. New York: Macmillan.

Download references

Acknowledgments

This study was supported by the Project 239/03-34-03 of the Ministerio de Medio Ambiente (Madrid), the F.G. Bernáldez Foundation (Madrid) and the Consejería de Medio Ambiente, Comunidad Autónoma de Madrid.

Author information

Correspondence to María F. Schmitz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ruiz-Labourdette, D., Schmitz, M.F., Montes, C. et al. Zoning a Protected Area: Proposal Based on a Multi-thematic Approach and Final Decision. Environ Model Assess 15, 531–547 (2010). https://doi.org/10.1007/s10666-010-9223-5

Download citation

Keywords

  • Decision-making Tools
  • Landscape Use Compatibility
  • Method for Zoning Protected Areas
  • Nature Conservation Policy
  • Protected Area Design
  • Science Policy Conflict