Skip to main content

Modeling of Hydrodynamics and Cohesive Sediment Processes in an Estuarine System: Study Case in Danshui River

Abstract

The Danshui River estuarine system is the largest estuarine system in northern Taiwan and is formed by the confluence of Tahan Stream, Hsintien Stream, and Keelung River. A comprehensive one-dimensional (1-D) model was used to model the hydrodynamics and cohesive sediment transport in this branched river estuarine system. The applied unsteady model uses advection/dispersion equation to model the cohesive sediment transport. The erosion and deposition processes are modeled as source/sink terms. The equations are solved numerically using an implicit finite difference scheme. Water surface elevation and longitudinal velocity time series were used to calibrate and verify the hydrodynamics of the system. To calibrate and verify the mixing process, the salinity time series was used and the dispersion coefficient of the advection/dispersion equation was determined. The cohesive sediment module was calibrated by comparing the simulated and field measured sediment concentration data and the erosion coefficient of the system was determined. A minimum mean absolute error of 4.22 mg/L was obtained and the snapshots of model results and field measurements showed a reasonable agreement. Our modeling showed that a 1-D model is capable of simulating the hydrodynamics and sediment processes in this estuary and the sediment concentration has a local maximum at the limit of salinity intrusion. Furthermore, it was indicated that for Q 50 (the flow which is equaled or exceeded 50% times), the turbidity maximum location during neap tide is about 1 km closer to the mouth compared to that during spring tide. It was found that deposition is the dominant sediment transport process in the river during spring–neap periods. It was shown that, while sediment concentration at the upstream depends on the river discharge, the concentration in the downstream is not a function of river discharge.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Abbott, M. B., & Ionescu, F. (1967). On the numerical computation of nearly-horizontal flows. Journal of Hydraulic Research, 5, 97–117.

    Google Scholar 

  2. Ali, A., Mynett, A. E., & Azam, M. H. (2007). Sediment dynamics in the Meghna estuary, Bangladesh: A model study. ASCE Journal of Waterway, Port, Coastal and Ocean Engineering, 133(4), 255–263.

    Article  Google Scholar 

  3. Burchard, H., & Baumert, H. (1998). The formation of estuarine turbidity maximum due to density effects in the salt wedge: A hydrodynamic process study. Journal of Physical Oceanography, 28, 309–321.

    Article  Google Scholar 

  4. Cancino, L., & Neves, R. (1999). Hydrodynamic and sediment suspension modelling in estuarine systems. Part II: Application to the Western Scheldt and Gironde estuaries. Journal of Marine Systems, 22, 117–131.

    Article  Google Scholar 

  5. Castaing, P., & Allen, G. P. (1981). Mechanisms controlling seaward escape of suspended sediment from the Gironde: A macrotidal estuary in France. Marine Geology, 40, 101–118.

    Article  Google Scholar 

  6. Chapra, S. C. (1997). Surface water-quality modeling (p. 844). New York: McGraw-Hill.

    Google Scholar 

  7. Chow, V. T. (1983). Open channel hydraulics (p. 680). New York: McGraw-Hill.

    Google Scholar 

  8. Cole, P., & Miles, G. V. (1983). Two-dimensional model of mud transport. ASCE Journal of Hydraulic Engineering, 109, 1–12.

    Article  Google Scholar 

  9. Das, B. M. (1990). Principal of geotechnical engineering (2nd ed.). Boston: PWS-KENT.

    Google Scholar 

  10. DHI Software Group. (2006). MIKE 11 reference manual. Denmark: Danish Hydraulic Institute.

    Google Scholar 

  11. Dyer, K. R. (1997). Estuaries: A physical introduction (p. 195). New York: Wiley.

    Google Scholar 

  12. Eisma, D. (1990). Transport and deposition of suspended matters in the North Sea and the relation with the coastal situation, pollution and bottom fauna distribution. Aquatic Science, 3, 181–216.

    Google Scholar 

  13. Falconer, R. A., & Chen, Y. (1996). Modelling sediment transport and water quality processes on tidal floodplains. In M. G. Anderson, D. E. Walling & P. D. Bates (Eds.), Flood plain processes (pp. 361–398). New York: Wiley.

    Google Scholar 

  14. Fettweis, M., Francken, F., Pison, V., & Van den Eynde, D. (2006). Suspended particle matter dynamics and aggregate sizes in a high turbidity area. Marine Geology, 235, 63–74.

    Article  Google Scholar 

  15. Fischer, H. B., List, E. J., Koh, R. Y. C., Imberger, J., & Brooks, N. H. (1979). Mixing in inland and coastal waters. San Diego: Academic.

    Google Scholar 

  16. Fortes Lopes, J., Dias, J. M., & Dekeyser, I. (2006). Numerical modeling of cohesive sediment transport in the Ria de Aveiro lagoon, Portugal. Journal of Hydrology, 319, 176–198.

    Article  Google Scholar 

  17. Geyer, W. R., Woodruff, J. D., & Traykovski, P. (2001). Sediment trapping and transport in the Hudson River. Estuaries, 24, 670–679.

    Article  Google Scholar 

  18. Geyer, W. R., Hill, P. S., & Kineke, G. C. (2004). The transport, transformation and dispersal of sediment by buoyant coastal flows. Continental Shelf Research, 24, 927–949.

    Article  Google Scholar 

  19. Gleizon, P., Punt, A. G., & Lyonsb, M. G. (2003). Modelling hydrodynamics and sediment flux within a macrotidal estuary: Problems and solutions. The Science of Total Environment, 314, 589–597.

    Article  CAS  Google Scholar 

  20. Hayter, E. J., & Mehta, A. J. (1986). Modelling cohesive sediment transport in estuarine waters. Applied Mathematical Modelling, 10, 294–303.

    Article  Google Scholar 

  21. Ho, C. S. (1975). An introduction to the geology of Taipei (p. 153). Taiwan: The Ministry of Economic Affairs.

    Google Scholar 

  22. Hsu, M. H., Wu, C. R., Liu, W. C., & Kuo, A. Y. (2006). Investigation of turbidity maximum in a mesotidal estuary, Taiwan. Journal of the American Water Resources Association, 42(4), 901–914.

    Article  Google Scholar 

  23. Krone, R. B. (1962). Flume studies of the transport of sediment in estuarine shoaling processes. Final Report to San Francisco District US Army Corps of Engineers, Washington DC. Berkeley: University of California, Berkeley.

    Google Scholar 

  24. Le Normant, C. (2000). Three dimensional modelling of sediment transport in the Loire estuary. Hydrological Processes, 14, 2231–2243.

    Article  Google Scholar 

  25. Lin, J., & Kuo, A. (2003). A model study of turbidity maxima in the York River estuary, Virginia. Estuaries, 26(5), 1269–1280.

    Article  Google Scholar 

  26. Lin, P., Huan, J., & Li, X. (1983). Unsteady transport of suspended load at small concentrations. ASCE Journal of Hydraulic Engineering, 109, 86–98.

    Article  Google Scholar 

  27. Liu, W. C. (2006). Modelling circulation and vertical mixing in estuaries. Proceedings of the Institute of Civil Engineering, Maritime Engineering, 159(2), 67–76.

    Article  Google Scholar 

  28. Liu, W. C., Hsu, M. H., & Kuo, A. Y. (2001). Investigation of long-term transport in the Tanshui River estuary, Taiwan. ASCE Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(2), 61–71.

    Article  Google Scholar 

  29. Liu, W. C., Hsu, M. H., Kuo, A. Y., & Kuo, J. T. (2001). The influence of river discharge on salinity intrusion in the Tanshui estuary, Taiwan. Journal of Coastal Research, 17(3), 544–552.

    Google Scholar 

  30. Liu, W. C., Hsu, M. H., & Kuo, A. Y. (2002). Modelling of hydrodynamics and cohesive sediment transport in Tanshui River Estuarine system, Taiwan. Marine Pollution Bulletin, 44, 1076–1088.

    Article  CAS  Google Scholar 

  31. Liu, W. C., Hsu, M. H., Wu, C. R., Wang, C. F., & Kuo, A. Y. (2004). Modeling salt intrusion in Tanshui River Estuarine system—Case study contrasting now and then. Journal of Hydraulic Engineering, 130, 849–859.

    Article  Google Scholar 

  32. Liu, K. K., Kao, S. J., Wen, L. S., & Chen, K. L. (2007). Carbon and nitrogen isotopic compositions of particle organic matter and biochemical processes in the eutrophic Danshuei Estuary in northern Taiwan. Science of the Total Environment, 382, 103–120.

    Article  CAS  Google Scholar 

  33. Lumborg, U., & Windelin, A. (2003). Hydrography and cohesive sediment modeling: Application to the Romo Dyb tidal area. Journal of Marine Systems, 38, 287–303.

    Article  Google Scholar 

  34. McNeil, J., Taylor, C., & Lick, W. (1996). Measurements of erosion of undisturbed bottom sediments with depth. Journal of Hydraulic Engineering, 122, 316–324.

    Article  Google Scholar 

  35. Mehta, A. J., Hayter, E. J., Parker, W. R., Krone, R. B., & Teeter, A. M. (1989). Cohesive sediment transport: Part I. Process description. Journal of Hydraulic Engineering, 115, 1076–1093.

    Article  Google Scholar 

  36. Mignoit, C. (1968). Etude des proprietes physique de differents sediments tres fins et de leur comportment sous des actions hydrodynamiques. La Houille Blache, 23, 591–620.

    Article  Google Scholar 

  37. Neary, V. S., Wright, S. A., & Bereciartua, P. (2001). Case study: Sediment transport in proposed geomorphic channel for Napa River. ASCE Journal of Hydraulic Engineering, 127, 901–910.

    Article  Google Scholar 

  38. Parker, W. R. (1997). On the characterization of cohesive sediment for transport modelling. In N. Burt, R. Parker & J. Watts (Eds.), Cohesive sediments, chap. 1 (pp. 3–15). Chichester: Wiley.

    Google Scholar 

  39. Parsa, J., Etemad-Shahidi, A., Hosseiny, S., & Yeganeh-Bakhtiary, A. (2007). Evaluation of computer and empirical models for prediction of salinity intrusion in the Bahmanshir Estuary. Journal of Coastal Research, SI 50, 658–662.

    Google Scholar 

  40. Rae, J. E. (1997). Trace metals in deposited intertidal sediments. In T. D. Jickells & J. E. Rae (Eds.), Biogeochemistry of inter-tidal sediments, vol. 9 (pp. 16–41). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  41. Rao, A., Dash, S., & Babu, S. V. (2004). Numerical study of the circulation and sediment transport in the Mahanadi Estuary. Natural Hazards, 32, 219–237.

    Article  Google Scholar 

  42. Scarlatos, P. D. (1981). On the numerical modelling of cohesive sediment transport. Journal of Hydraulic Research, 19, 61–68.

    Google Scholar 

  43. Schubel, J. R. (1972). Distribution and transportation of suspended sediment in Upper Chesapeake Bay. Geological Society of America, 133, 151–167.

    Google Scholar 

  44. Soil Survey Staff. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. Agricultural handbook, vol. 436 (p. 120). Washington: USDA-NRCS.

    Google Scholar 

  45. Song, G. S., Wen, L. S., Liu, K. K., & Liu, P. K. (2002). Underwater topography in the downstream portion of Tanshui Rvier. Acta Oceanographica Taiwanica, 40, 25–30.

    Google Scholar 

  46. Sverdrup, H. V., Johnson, M. W., & Fleming, R. H. (1942). The oceans. New York: Prentice-Hall.

    Google Scholar 

  47. Teisson, C. (1991). Cohesive suspended sediment transport: Feasibility and limitations of numerical modelling. Journal of Hydraulic Research, 29, 755–769.

    Article  Google Scholar 

  48. Tett, P. B., Joint, I. R., Purdie, D. A., Barres, M., Oosterhuis, S., Daberi, G., et al. (1993). Bilological consequences of tidal stirring gradients in the North Ocean. Philosophical Transactions of the Royal Society of London A, 343, 493–508.

    Article  Google Scholar 

  49. Tuin, H. V., Le Huu Mikhailov, V., Roelfzema, A., & Volker, A. (1991). Guidelines on the study of sea water intrusion into rivers (p. 202). France: UNESCO.

    Google Scholar 

  50. Uncles, R. J., & Stephens, J. A. (1989). Distribution of suspended sediment at high water in a microtidal estuary. Journal of Geophysical Research, 94, 14395–14405.

    Article  Google Scholar 

  51. Van Der Lee, W. T. B. (2000). The settling of mud flocs in the Dollard estuary, The Netherlands. Netherlands Geographic Studies, 274, 15–121.

    Google Scholar 

  52. Van Rijn, L. C. (1993). Principle of sediment transport in rivers, estuaries and coastal seas (p. 1386). The Netherlands: Aqua.

    Google Scholar 

  53. Van Wijngaarden, M. (1999). A two-dimensional model for suspended sediment transport in the southern branch of the Rhine-Meuse estuary, the Netherlands. Earth Surface Processes and Landforms, 24, 1173–1188.

    Article  Google Scholar 

  54. Winterwerp, J. C., Cornelisse, J. M., & Kuijper, C. (1991). A laboratory study on the behavior of mud from the Western Scheldt under tidal conditions. Proceedings of the Nearshore and Estuarine Cohesive Sediment Transport Workshop, St. Petersburg, Florida, pp. 295–313.

  55. Yang, C. T. (1996). Sediment transport, theory and practice. New York: McGraw-Hill.

    Google Scholar 

  56. Zheng, L., Chen, C. S., Alber, M., & Liu, H. (2003). A modeling study of the Satilla River estuary, Georgia, II: Suspended sediment. Estuaries, 26(3), 670–679.

    Article  Google Scholar 

Download references

Acknowledgment

The measured data were mostly provided by the Taiwan Water Resources Agency. The authors also express their special appreciation to Abbas Dorostkar and Hengameh Moshfeghi, whose comments and assistance led to substantial improvement of this paper. We also thank Neil B. Fazel for editing the manuscript. This work was partly supported by the Deputy of Research, Iran University of Science and Technology and the first author was a recipient of a Gledden Senior Visitor Fellowship from UWA, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Etemad-Shahidi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Etemad-Shahidi, A., Shahkolahi, A. & Liu, WC. Modeling of Hydrodynamics and Cohesive Sediment Processes in an Estuarine System: Study Case in Danshui River. Environ Model Assess 15, 261–271 (2010). https://doi.org/10.1007/s10666-009-9203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-009-9203-9

Keywords

  • Numerical simulation
  • Danshui River
  • MIKE 11
  • Estuarine hydrodynamic
  • Sediment transport