Abstract
In this study, an interval-parameter fuzzy-stochastic two-stage programming (IFSTP) approach is developed for irrigation planning within an agriculture system under multiple uncertainties. A concept of the distribution with fuzzy-interval probability (DFIP) is defined to address multiple uncertainties expressed as integration of intervals, fuzzy sets, and probability distributions. IFSTP integrates the interval programming, two-stage stochastic programming, and fuzzy-stochastic programming within a general optimization framework. IFSTP incorporates the pre-regulated water resources management policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised amounts are not delivered. IFSTP is applied to an irrigation planning in a water resources management system. Solutions from IFSTP provide desired water allocation patterns, which maximize both the system’s benefits and feasibility. The results indicate that reasonable solutions are generated for objective function values and decision variables; thus, a number of decision alternatives can be generated under different levels of stream flows.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ahmed, S., Tawarmalani, M., & Sahinidis, N. V. (2004). A finite branch-and-bound algorithm for two-stage stochastic integer programs. Mathematical Programming, 100(2), 355–377. doi:10.1007/s10107-003-0475-6.
Barbosa, P. S. F., & Pricilla, R. P. (2002). A linear programming model for cash flow management in the Brazilian construction industry. Journal of Planning Literature, 16, 339. doi:10.1177/08854120222093400.
Beraldi, P., Grandinetti, L., Musmanno, R., & Triki, C. (2000). Parallel algorithms to solve two-stage stochastic linear programs with robustness constrains. Parallel Computing, 26, 1889–1908. doi:10.1016/S0167-8191(00)00057-0.
Cai, X., McKinney, D. C., & Lasdon, L. S. (2001). Solving nonlinear water management models using a combined genetic algorithm and linear programming approach. Advances in Water Resources, 24(6), 667–676. doi:10.1016/S0309-1708(00)00069-5.
Cai, Y. P., Huang, G. H., Nie, X. H., Li, Y. P., & Tan, Q. (2007). Municipal solid waste management under uncertainty: A mixed interval parameter fuzzy-stochastic robust programming approach. Environmental Engineering Science, 24(3), 338–352. doi:10.1089/ees.2005.0140.
Chang, N. B. (2005). Sustainable water resources management under uncertainty. Stochastic Environmental Research and Risk Assessment, 19, 97–98. doi:10.1007/s00477-004-0217-1.
Charnes, A., & Cooper, W. W. (1983). Response to decision problems under risk and chance constrained programming: Dilemmas in the transitions. Management Science, 29, 750–753. doi:10.1287/mnsc.29.6.750.
Charnes, A., Cooper, W. W., & Kirby, P. (1972). Chance constrained programming: an extension of statistical method. In: Optimizing methods in statistics (pp. 391-402). New York: Academic.
Dai, L., Chen, C. H., & Birge, J. R. (2000). Convergence properties of two-stage stochastic programming. Journal of Optimization Theory and Applications, 106, 489–509. doi:10.1023/A:1004649211111.
Dubois, D., & Prade, H. (1983). Ranking fuzzy numbers in the setting of possibility theory. Information Sciences, 30, 183–224. doi:10.1016/0020-0255(83)90025-7.
Guo, P., & Huang, G. H. (2008). Two-stage fuzzy chance-constrained programming—application to water resources management under dual uncertainties. Stochastic Environmental Research and Risk Assessment, 23, 349–359. doi:10.1007/s00477-008-0221-y.
Guo, P., Huang, G. H., He, L., & Sun, B. W. (2008). ITSSIP: Interval-parameter two-stage stochastic semi-infinite programming for environmental management under uncertainty. Environmental Modelling & Software, 23, 1422–1437. doi:10.1016/j.envsoft.2008.04.009.
Guo, P., Huang, G. H., & He, L. (2008). ISMISIP: an inexact stochastic mixed integer linear semi-infinite programming approach for solid waste management and planning under uncertainty. Stochastic Environmental Research and Risk Assessment, 22, 759–775. doi:10.1007/s00477-007-0185-3.
Guo, P., Huang, G.H., He, L., & Li, H.L. (2009). IFSSIP: Interval-parameter fuzzy-stochastic semi-infinite mixed-integer linear programming for waste management under uncertainty. Environmental Modeling and Assessment. doi:10.1007/s10666-008-9143-9.
Huang, G. H. (1996). An interval parameter water quality management model. Engineering Optimization, 26(2), 79–103. doi:10.1080/03052159608941111.
Huang, G. H. (1998). A hybrid inexact-stochastic water management model. European Journal of Operational Research, 107, 137–158. doi:10.1016/S0377-2217(97)00144-6.
Huang, G. H., & Chang, N. B. (2003). The perspectives of environmental informatics and systems analysis. Journal of Environmental Informatics, 1, 1–6. doi:10.3808/jei.200300001.
Huang, G. H., & Loucks, D. P. (2000). An inexact two-stage stochastic programming model for water resources management under uncertainty. Civil Engineering and Environmental Systems, 17, 95–118. doi:10.1080/02630250008970277.
Huang, G. H., & Moore, R. D. (1993). Grey linear programming, its solving approach, and its application. International Journal of Systems Science, 24, 159–172. doi:10.1080/00207729308949477.
Huang, G. H., Baetz, B. W., & Patry, G. G. (1992). An interval linear programming approach for municipal solid waste management planning under uncertainty. Civil Engineering Systems, 9, 319–335. doi:10.1080/02630259208970657.
Huang, G. H., Baetz, B. W., & Patry, G. G. (1995). Grey fuzzy integer programming: an application to regional waste management planning under uncertainty. Socio-Economic Planning Sciences, 29(1), 17–38. doi:10.1016/0038-0121(95)98604-T.
Huang, G. H., Sae-Lim, N., Liu, L., & Chen, Z. (2001). An interval-parameter fuzzy-stochastic programming approach for municipal solid waste management and planning. Environmental Modeling and Assessment, 6, 271–283. doi:10.1023/A:1013394118863.
Iskander, M. G. (2005). A suggested approach for possibility and necessity dominance indices in stochastic fuzzy linear programming. Applied Mathematics Letters, 18, 395–399.
Jung, B. S., Karnev, B. W., & Lambert, M. F. (2006). Benchmark tests of evolutionary algorithms: Mathematic evaluation and application to water distribution systems. Journal of Environmental Informatics, 7(1), 24–35. doi:10.3808/jei.200600064.
Khare, D., Jat, M. K., & Ediwahyunan,. (2006). Assessment of counjunctive use planning options: A case study of Sapon irrigation command area of Indonesia. Journal of Hydrology (Amsterdam), 328, 764–777. doi:10.1016/j.jhydrol.2006.01.018.
Li, Y. P., Huang, G. H., & Nie, S. L. (2006). An interval-parameter multi-stage stochastic programming model for water resources management under uncertainty. Advances in Water Resources, 29, 776–789. doi:10.1016/j.advwatres.2005.07.008.
Li, Y. P., Huang, G. H., & Nie, S. L. (2007). Mixed interval-fuzzy two-stage integer programming and its application to flood-diversion planning. Engineering Optimization, 39(2), 163–183. doi:10.1080/03052150601044831.
Li, Y. P., Huang, G. H., Nie, X. H., & Nie, S. L. (2008). An inexact fuzzy-robust two-stage programming model for managing sulfur dioxide abatement under uncertainty. Environmental Modeling and Assessment, 13(1), 77–91. doi:10.1007/s10666-006-9077-z.
Liu, L., Huang, G. H., Liu, Y., Fuller, G. A., & Zeng, G. M. (2003). A fuzzy-stochastic robust programming model for regional air quality management under uncertainty. Engineering Optimization, 35(2), 177. doi:10.1080/0305215031000097068.
Liu, Z. F., Huang, G. H., Nie, X. H., & He, L. (2009). Dual-interval linear programming model and its application to solid waste management planning. Environmental Engineering Science. doi:10.1089/ees.2007.0289.
Lund, J. R. (2006). Drought storage allocation rules for surface reservoir systems. Journal of Water Resources Planning and Management, 132(5), 395–397. doi:10.1061/(ASCE)0733-9496(2006)132:5(395).
Luo, B., Maqsood, I., Yin, Y. Y., Huang, G. H., & Cohen, S. J. (2003). Adaption to climate change through water trading under uncertainty—An inexact two-stage nonlinear programming approach. Journal of Environmental Informatics, 2, 58–68. doi:10.3808/jei.200300022.
Maqsood, I., Huang, G. H., Huang, Y. F., & Chen, B. (2005). ITOM: an interval-parameter two-stage optimization model for stochastic planning of water resources systems. Stochastic Environmental Research and Risk Assessment, 19, 125–133. doi:10.1007/s00477-004-0220-6.
Maqsood, I., Huang, G. H., & Yeomans, J. S. (2005). An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty. European Journal of Operational Research, 167, 208–225. doi:10.1016/j.ejor.2003.08.068.
Nie, X. H., Huang, G. H., Li, Y. P., & Liu, L. (2007). IFRP: A hybrid interval-parameter fuzzy robust programming approach for waste management planning under uncertainty. Journal of Environmental Management, 84(1), 1–11. doi:10.1016/j.jenvman.2006.04.006.
Rosenberg, D. E. (2007). Probabilistic estimation of water conservation effectiveness. Journal of Water Resources Planning and Management, 133(1), 39–49. doi:10.1061/(ASCE)0733-9496(2007)133:1(39).
Rosenberg, D. E., & Lund, J. R. (2006). Derived operating rules for allocating recharges and withdrawals among unconnected aquifers. Journal of Water Resources Planning and Management, 132(1), 25–34. doi:10.1061/(ASCE)0733-9496(2006)132:1(25).
Rosenberg, D. E., & Lund, J. R. (2009). Modeling integrated decisions for a municipal water system with recourse and uncertainties: Amman, Jordan. Water Resources Management, 23(1), 85–115. doi:10.1007/s11269-008-9266-4.
Rosenberg, D. E., Tarawneh, T., Abdel-Khaleq, R., & Lund, J. R. (2007). Modeling integrated water user decisions in intermittent supply systems. Water Resources Research, 43(7), W07425. doi:10.1029/2006WR005340.
Rosenberg, D. E., Howitt, R. E., & Lund, J. R. (2008). Water management with water conservation, infrastructure expansions, and source variability in Jordan. Water Resources Research, 44(11), W11402. doi:10.1029/2007WR006519.
Wu, S. M., Huang, G. H., & Guo, H. C. (1997). An interactive inexact-fuzzy approach for multiobjective planning of water resource systems. Water Science and Technology, 36(5), 235–242. doi:10.1016/S0273-1223(97)00479-4.
Yin, Y. Y., Huang, G. H., & Hipel, K. W. (1999). Fuzzy relation analysis for multicriteria water resources management. Journal of Water Resources Planning and Management, 125(1), 41–47. doi:10.1061/(ASCE)0733-9496(1999)125:1(41).
Acknowledgments
The authors would like to thank the anonymous reviewers for their insightful and helpful comments and suggestions that were very helpful for improving the manuscript. This research was supported by the Major State Basic Research Development Program of MOST (2005CB724200 and 2006CB403307), the Canadian Water Network under the Networks of Centers of Excellence (NCE), and the Natural Science and Engineering Research Council of Canada.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guo, P., Huang, G.H. & Li, Y.P. Inexact Fuzzy-Stochastic Programming for Water Resources Management Under Multiple Uncertainties. Environ Model Assess 15, 111–124 (2010). https://doi.org/10.1007/s10666-009-9194-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10666-009-9194-6


