Skip to main content

Advertisement

Log in

Inexact Fuzzy-Stochastic Programming for Water Resources Management Under Multiple Uncertainties

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

In this study, an interval-parameter fuzzy-stochastic two-stage programming (IFSTP) approach is developed for irrigation planning within an agriculture system under multiple uncertainties. A concept of the distribution with fuzzy-interval probability (DFIP) is defined to address multiple uncertainties expressed as integration of intervals, fuzzy sets, and probability distributions. IFSTP integrates the interval programming, two-stage stochastic programming, and fuzzy-stochastic programming within a general optimization framework. IFSTP incorporates the pre-regulated water resources management policies directly into its optimization process to analyze various policy scenarios; each scenario has different economic penalty when the promised amounts are not delivered. IFSTP is applied to an irrigation planning in a water resources management system. Solutions from IFSTP provide desired water allocation patterns, which maximize both the system’s benefits and feasibility. The results indicate that reasonable solutions are generated for objective function values and decision variables; thus, a number of decision alternatives can be generated under different levels of stream flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ahmed, S., Tawarmalani, M., & Sahinidis, N. V. (2004). A finite branch-and-bound algorithm for two-stage stochastic integer programs. Mathematical Programming, 100(2), 355–377. doi:10.1007/s10107-003-0475-6.

    Article  Google Scholar 

  2. Barbosa, P. S. F., & Pricilla, R. P. (2002). A linear programming model for cash flow management in the Brazilian construction industry. Journal of Planning Literature, 16, 339. doi:10.1177/08854120222093400.

    Article  Google Scholar 

  3. Beraldi, P., Grandinetti, L., Musmanno, R., & Triki, C. (2000). Parallel algorithms to solve two-stage stochastic linear programs with robustness constrains. Parallel Computing, 26, 1889–1908. doi:10.1016/S0167-8191(00)00057-0.

    Article  Google Scholar 

  4. Cai, X., McKinney, D. C., & Lasdon, L. S. (2001). Solving nonlinear water management models using a combined genetic algorithm and linear programming approach. Advances in Water Resources, 24(6), 667–676. doi:10.1016/S0309-1708(00)00069-5.

    Article  Google Scholar 

  5. Cai, Y. P., Huang, G. H., Nie, X. H., Li, Y. P., & Tan, Q. (2007). Municipal solid waste management under uncertainty: A mixed interval parameter fuzzy-stochastic robust programming approach. Environmental Engineering Science, 24(3), 338–352. doi:10.1089/ees.2005.0140.

    Article  CAS  Google Scholar 

  6. Chang, N. B. (2005). Sustainable water resources management under uncertainty. Stochastic Environmental Research and Risk Assessment, 19, 97–98. doi:10.1007/s00477-004-0217-1.

    Article  Google Scholar 

  7. Charnes, A., & Cooper, W. W. (1983). Response to decision problems under risk and chance constrained programming: Dilemmas in the transitions. Management Science, 29, 750–753. doi:10.1287/mnsc.29.6.750.

    Article  Google Scholar 

  8. Charnes, A., Cooper, W. W., & Kirby, P. (1972). Chance constrained programming: an extension of statistical method. In: Optimizing methods in statistics (pp. 391-402). New York: Academic.

  9. Dai, L., Chen, C. H., & Birge, J. R. (2000). Convergence properties of two-stage stochastic programming. Journal of Optimization Theory and Applications, 106, 489–509. doi:10.1023/A:1004649211111.

    Article  Google Scholar 

  10. Dubois, D., & Prade, H. (1983). Ranking fuzzy numbers in the setting of possibility theory. Information Sciences, 30, 183–224. doi:10.1016/0020-0255(83)90025-7.

    Article  Google Scholar 

  11. Guo, P., & Huang, G. H. (2008). Two-stage fuzzy chance-constrained programming—application to water resources management under dual uncertainties. Stochastic Environmental Research and Risk Assessment, 23, 349–359. doi:10.1007/s00477-008-0221-y.

    Article  Google Scholar 

  12. Guo, P., Huang, G. H., He, L., & Sun, B. W. (2008). ITSSIP: Interval-parameter two-stage stochastic semi-infinite programming for environmental management under uncertainty. Environmental Modelling & Software, 23, 1422–1437. doi:10.1016/j.envsoft.2008.04.009.

    Article  Google Scholar 

  13. Guo, P., Huang, G. H., & He, L. (2008). ISMISIP: an inexact stochastic mixed integer linear semi-infinite programming approach for solid waste management and planning under uncertainty. Stochastic Environmental Research and Risk Assessment, 22, 759–775. doi:10.1007/s00477-007-0185-3.

    Article  Google Scholar 

  14. Guo, P., Huang, G.H., He, L., & Li, H.L. (2009). IFSSIP: Interval-parameter fuzzy-stochastic semi-infinite mixed-integer linear programming for waste management under uncertainty. Environmental Modeling and Assessment. doi:10.1007/s10666-008-9143-9.

  15. Huang, G. H. (1996). An interval parameter water quality management model. Engineering Optimization, 26(2), 79–103. doi:10.1080/03052159608941111.

    Article  Google Scholar 

  16. Huang, G. H. (1998). A hybrid inexact-stochastic water management model. European Journal of Operational Research, 107, 137–158. doi:10.1016/S0377-2217(97)00144-6.

    Article  Google Scholar 

  17. Huang, G. H., & Chang, N. B. (2003). The perspectives of environmental informatics and systems analysis. Journal of Environmental Informatics, 1, 1–6. doi:10.3808/jei.200300001.

    Article  Google Scholar 

  18. Huang, G. H., & Loucks, D. P. (2000). An inexact two-stage stochastic programming model for water resources management under uncertainty. Civil Engineering and Environmental Systems, 17, 95–118. doi:10.1080/02630250008970277.

    Article  Google Scholar 

  19. Huang, G. H., & Moore, R. D. (1993). Grey linear programming, its solving approach, and its application. International Journal of Systems Science, 24, 159–172. doi:10.1080/00207729308949477.

    Article  Google Scholar 

  20. Huang, G. H., Baetz, B. W., & Patry, G. G. (1992). An interval linear programming approach for municipal solid waste management planning under uncertainty. Civil Engineering Systems, 9, 319–335. doi:10.1080/02630259208970657.

    Article  CAS  Google Scholar 

  21. Huang, G. H., Baetz, B. W., & Patry, G. G. (1995). Grey fuzzy integer programming: an application to regional waste management planning under uncertainty. Socio-Economic Planning Sciences, 29(1), 17–38. doi:10.1016/0038-0121(95)98604-T.

    Article  Google Scholar 

  22. Huang, G. H., Sae-Lim, N., Liu, L., & Chen, Z. (2001). An interval-parameter fuzzy-stochastic programming approach for municipal solid waste management and planning. Environmental Modeling and Assessment, 6, 271–283. doi:10.1023/A:1013394118863.

    Article  Google Scholar 

  23. Iskander, M. G. (2005). A suggested approach for possibility and necessity dominance indices in stochastic fuzzy linear programming. Applied Mathematics Letters, 18, 395–399.

    Google Scholar 

  24. Jung, B. S., Karnev, B. W., & Lambert, M. F. (2006). Benchmark tests of evolutionary algorithms: Mathematic evaluation and application to water distribution systems. Journal of Environmental Informatics, 7(1), 24–35. doi:10.3808/jei.200600064.

    Article  Google Scholar 

  25. Khare, D., Jat, M. K., & Ediwahyunan,. (2006). Assessment of counjunctive use planning options: A case study of Sapon irrigation command area of Indonesia. Journal of Hydrology (Amsterdam), 328, 764–777. doi:10.1016/j.jhydrol.2006.01.018.

    Article  Google Scholar 

  26. Li, Y. P., Huang, G. H., & Nie, S. L. (2006). An interval-parameter multi-stage stochastic programming model for water resources management under uncertainty. Advances in Water Resources, 29, 776–789. doi:10.1016/j.advwatres.2005.07.008.

    Article  Google Scholar 

  27. Li, Y. P., Huang, G. H., & Nie, S. L. (2007). Mixed interval-fuzzy two-stage integer programming and its application to flood-diversion planning. Engineering Optimization, 39(2), 163–183. doi:10.1080/03052150601044831.

    Article  Google Scholar 

  28. Li, Y. P., Huang, G. H., Nie, X. H., & Nie, S. L. (2008). An inexact fuzzy-robust two-stage programming model for managing sulfur dioxide abatement under uncertainty. Environmental Modeling and Assessment, 13(1), 77–91. doi:10.1007/s10666-006-9077-z.

    Article  Google Scholar 

  29. Liu, L., Huang, G. H., Liu, Y., Fuller, G. A., & Zeng, G. M. (2003). A fuzzy-stochastic robust programming model for regional air quality management under uncertainty. Engineering Optimization, 35(2), 177. doi:10.1080/0305215031000097068.

    Article  CAS  Google Scholar 

  30. Liu, Z. F., Huang, G. H., Nie, X. H., & He, L. (2009). Dual-interval linear programming model and its application to solid waste management planning. Environmental Engineering Science. doi:10.1089/ees.2007.0289.

    Google Scholar 

  31. Lund, J. R. (2006). Drought storage allocation rules for surface reservoir systems. Journal of Water Resources Planning and Management, 132(5), 395–397. doi:10.1061/(ASCE)0733-9496(2006)132:5(395).

    Article  Google Scholar 

  32. Luo, B., Maqsood, I., Yin, Y. Y., Huang, G. H., & Cohen, S. J. (2003). Adaption to climate change through water trading under uncertainty—An inexact two-stage nonlinear programming approach. Journal of Environmental Informatics, 2, 58–68. doi:10.3808/jei.200300022.

    Article  Google Scholar 

  33. Maqsood, I., Huang, G. H., Huang, Y. F., & Chen, B. (2005). ITOM: an interval-parameter two-stage optimization model for stochastic planning of water resources systems. Stochastic Environmental Research and Risk Assessment, 19, 125–133. doi:10.1007/s00477-004-0220-6.

    Article  Google Scholar 

  34. Maqsood, I., Huang, G. H., & Yeomans, J. S. (2005). An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty. European Journal of Operational Research, 167, 208–225. doi:10.1016/j.ejor.2003.08.068.

    Article  Google Scholar 

  35. Nie, X. H., Huang, G. H., Li, Y. P., & Liu, L. (2007). IFRP: A hybrid interval-parameter fuzzy robust programming approach for waste management planning under uncertainty. Journal of Environmental Management, 84(1), 1–11. doi:10.1016/j.jenvman.2006.04.006.

    Article  CAS  Google Scholar 

  36. Rosenberg, D. E. (2007). Probabilistic estimation of water conservation effectiveness. Journal of Water Resources Planning and Management, 133(1), 39–49. doi:10.1061/(ASCE)0733-9496(2007)133:1(39).

    Article  Google Scholar 

  37. Rosenberg, D. E., & Lund, J. R. (2006). Derived operating rules for allocating recharges and withdrawals among unconnected aquifers. Journal of Water Resources Planning and Management, 132(1), 25–34. doi:10.1061/(ASCE)0733-9496(2006)132:1(25).

    Article  Google Scholar 

  38. Rosenberg, D. E., & Lund, J. R. (2009). Modeling integrated decisions for a municipal water system with recourse and uncertainties: Amman, Jordan. Water Resources Management, 23(1), 85–115. doi:10.1007/s11269-008-9266-4.

    Article  Google Scholar 

  39. Rosenberg, D. E., Tarawneh, T., Abdel-Khaleq, R., & Lund, J. R. (2007). Modeling integrated water user decisions in intermittent supply systems. Water Resources Research, 43(7), W07425. doi:10.1029/2006WR005340.

    Article  Google Scholar 

  40. Rosenberg, D. E., Howitt, R. E., & Lund, J. R. (2008). Water management with water conservation, infrastructure expansions, and source variability in Jordan. Water Resources Research, 44(11), W11402. doi:10.1029/2007WR006519.

    Article  Google Scholar 

  41. Wu, S. M., Huang, G. H., & Guo, H. C. (1997). An interactive inexact-fuzzy approach for multiobjective planning of water resource systems. Water Science and Technology, 36(5), 235–242. doi:10.1016/S0273-1223(97)00479-4.

    Article  Google Scholar 

  42. Yin, Y. Y., Huang, G. H., & Hipel, K. W. (1999). Fuzzy relation analysis for multicriteria water resources management. Journal of Water Resources Planning and Management, 125(1), 41–47. doi:10.1061/(ASCE)0733-9496(1999)125:1(41).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their insightful and helpful comments and suggestions that were very helpful for improving the manuscript. This research was supported by the Major State Basic Research Development Program of MOST (2005CB724200 and 2006CB403307), the Canadian Water Network under the Networks of Centers of Excellence (NCE), and the Natural Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, P., Huang, G.H. & Li, Y.P. Inexact Fuzzy-Stochastic Programming for Water Resources Management Under Multiple Uncertainties. Environ Model Assess 15, 111–124 (2010). https://doi.org/10.1007/s10666-009-9194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-009-9194-6

Keywords