Linking Hydrogeological and Ecological Tools for an Integrated River Catchment Assessment

Abstract

Ecological (biological and hydrochemical assessment) and hydrogeological (vulnerability and pollution risk mapping) tools have been combined to assess the ecological quality and hydrogeological vulnerability of an agricultural river basin. In addition, the applicability of the recently developed vulnerability assessment approach (COP method) in the particular environmental conditions was tested by comparing its results with hydroecological assessment tools (i.e., pollution metrics). Five sampling sites were selected and sampled for benthic macroinvertebrates and physicochemical variables during summer and spring. Overall, sites ranged from moderate to poor ecological quality. The results illustrated that 26% of the study area was of moderate pollution risk, while 65% was classified as of low and very low risk zones. However, the higher elevation zones where calcareous rock formations are encountered presented moderate to high pollution risk that was accredited by the ecological quality assessment. Pollution metrics facilitated from hydrochemical analysis indicated a significant association with groundwater vulnerability, thus validating vulnerability and risk estimations. This study indicated that the particular groundwater pollution risk mapping methodology and the water quality assessment indices can be well combined to provide an integrated evaluation tool at a catchment scale.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Al-Adamat, R. A. N., Foster, I. D. L., & Baban, S. M. J. (2003). Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, Remote sensing and DRASTIC. Applied Geography (Sevenoaks, England), 23, 303–324. doi:10.1016/j.apgeog.2003.08.007.

    Article  Google Scholar 

  2. 2.

    Alba-Tercedor, J., & Sanchez-Ortega, A. (1988). Un metodo rapido y simple para evaluar la calidad biologica de las aguas corrientes basado en el de Hellawell (1978). Limnetica, 4, 51–56.

    Google Scholar 

  3. 3.

    Albanis, T. (1992). Herbicide losses in runoff from the agricultural area of Thessaloniki in Thermaikos Gulf, N. Greece. The Science of the Total Environment, 114, 59–71. doi:10.1016/0048-9697(92)90414-N.

    Article  CAS  Google Scholar 

  4. 4.

    Albinet, M., & Margat, J. (1970). Cartographie de la vulnérabilité à la pollution des nappes d’eau souterraine. Orléans, France, Bull BRGM 2ème série, sect 3, 4, 13–22.

  5. 5.

    Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology and Systematics, 35, 257–284. doi:10.1146/annurev.ecolsys.35.120202.110122.

    Article  Google Scholar 

  6. 6.

    Allan, J. D., Erickson, D. L., & Fay, J. (1997). The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology, 37, 149–161. doi:10.1046/j.1365-2427.1997.d01-546.x.

    Article  Google Scholar 

  7. 7.

    Andreo, B., Goldscheider, N., Vadillo, I., Vias, J. M., Neukum, C., Sinreich, M., et al. (2006). Karst groundwater protection: First application of a Pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Lýbar (Southern Spain). The Science of the Total Environment, 357, 54–73. doi:10.1016/j.scitotenv.2005.05.019.

    Article  CAS  Google Scholar 

  8. 8.

    AQEM Consortium (2002). Manual for the application of the AQEM method. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. Version 1.0. Retrieved Feb 2002 from http://www.aqem.de.

  9. 9.

    Armitage, P. D., Moss, D., Wright, J. F., & Furse, M. T. (1983). The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research, 17, 333–347. doi:10.1016/0043-1354(83)90188-4.

    Article  CAS  Google Scholar 

  10. 10.

    Babiker, I. S., Mohamed, A. A. M., Hiyama, T., & Kato, K. (2005). A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. The Science of the Total Environment, 345, 127–140. doi:10.1016/j.scitotenv.2004.11.005.

    Article  CAS  Google Scholar 

  11. 11.

    Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. Washington, DC: US Environmental Protection Agency, Office of Water.

  12. 12.

    Cardoso, A. C., Duchemin, J., Magoarou, P., & Premazzi, G. (2001). Criteria for the identification of freshwater subject to eutrophication. Their use for the implementation of the “Nitrates” and Urban Waste Water Directives. EUR 19810 EN, EU–JRC, 87.

  13. 13.

    COST 620. (1998). Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Minutes from the 3rd MC-Meeting, 8 S., Liège, Belgium, 12–13 March.

  14. 14.

    Decreto Legislativo.n. 152. (1999). Disposizioni sulla tutela delle acque dall’inquinamento e recepimento della direttiva 91/271/CEE concernete il trattamento delle acque reflue urbane e della direttiva 91/676/CEE relative alla protezione delle acque dall’inquinamento provocato dai nitrati provenienti da fonti agricole. Supplemento Ordinario n. 101/L alla Gazzetta Ufficiale 29 maggio 1999, n. 124.

  15. 15.

    Dixon, B. (2005). Groundwater vulnerability mapping: A GIS and fuzzy rule based integrated tool. Applied Geography (Sevenoaks, England), 25, 327–347. doi:10.1016/j.apgeog.2005.07.002.

    Article  Google Scholar 

  16. 16.

    Dodds, W. K., & Oakes, R. M. (2004). A technique for establishing reference nutrient concentrations across watersheds affected by humans. Limnology and Oceanography, Methods, 2, 333–341.

    Google Scholar 

  17. 17.

    Eckhardt, D. A. V., & Stackelberg, P. E. (1995). Relation of ground-water quality to land use on Long Island, New York. Ground Water, 33, 1019–1033. doi:10.1111/j.1745-6584.1995.tb00047.x.

    Article  CAS  Google Scholar 

  18. 18.

    European Parliament and Council of the European Union. EU Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000, establishing a framework for Community action in the field of water policy. Official Journal of the European Community 22 December 2000, L 327, 1–72.

  19. 19.

    Ghetti, P. F. (1997). Indicie Biotico Esteso (I.B.E.). I macroinvertebrati nel controllo della qualitá degli anbienti di acque correnti. Provincia Autonoma di Trento.

  20. 20.

    Goerfliger, N., Jeannin, P. Y., & Zwahlen, F. (1999). Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environmental Geology, 39, 165–176. doi:10.1007/s002540050446.

    Article  Google Scholar 

  21. 21.

    Goldscheider, N., Brechenmacher, J., Hotzl, H., & Neukum, C. (2003). Engen, Swabian Alb, Germany. In: F. Zwahlen (Ed.), COST Action 620—Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final Report, European Commission Directorate-General XII Science, Research and Development, Report EUR, COST-ACTION 620. Luxembourg, 200–216.

  22. 22.

    Hellawell, J. M. (1986). Biological indicators of freshwater pollution and environmental management. New York: Elsevier Applied Science.

    Google Scholar 

  23. 23.

    House, M. A., & Ellis, J. B. (1987). The development of water quality indices for operational management. Water Science and Technology, 19, 145–154.

    CAS  Google Scholar 

  24. 24.

    Hynes, H. B. N. (1960). The biology of polluted water. Cambridge: Liverpool University Press.

    Google Scholar 

  25. 25.

    Knox, R. C., Sabatini, D. A., & Canter, L. W. (1993). Subsurface transport and fate processes. Boca Raton: Lewis.

    Google Scholar 

  26. 26.

    Kronvang, B., Bechmann, M., Pedersen, M. L., & Flynn, N. (2003). Phosphorus dynamics and export in streams draining micro-catchments: development of empirical models. Journal of Plant Nutrition and Soil Science, 166, 469–474. doi:10.1002/jpln.200321164.

    Article  CAS  Google Scholar 

  27. 27.

    Lake, I. R., Lovett, A. A., Hiscock, K. M., Betson, M., Foley, A., Sünnenberg, G., et al. (2003). Evaluating factors influencing groundwater vulnerability to nitrate pollution: developing the potential of GIS. Journal of Environmental Management, 68, 315–328. doi:10.1016/S0301-4797(03)00095-1.

    Article  Google Scholar 

  28. 28.

    Ministry of Development of Greece (1996). Plan for management program of water resources of Greece. Athens, pp. 56–64.

  29. 29.

    Munne, A., Prat, N., Sol, C., Bonada, N., & Rieradevall, M. (2003). A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquatic Conservation: Marine & Freshwater Ecosystems, 13, 147–163. doi:10.1002/aqc.529.

    Article  Google Scholar 

  30. 30.

    Raven, P. J., Boon, P. J., Dawson, F. H., & Ferguson, A. J. D. (1998). Towards an integrated approach to classifying and evaluating rivers in the UK. Aquatic Conservation: Marine & Freshwater Ecosystems, 8, 383–393. doi:10.1002/(SICI)1099-0755(199807/08)8:4<383::AID-AQC303>3.0.CO;2-L.

    Article  Google Scholar 

  31. 31.

    Rosenberg, D. M., & Resh, V. H. (1993). Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman Hall.

    Google Scholar 

  32. 32.

    Roth, N. E., Allan, J. D., & Erickson, D. L. (1996). Landscape influences on stream biotic integrity assessed at multiple spatial scales. Landscape Ecology, 11, 141–156. doi:10.1007/BF02447513.

    Article  Google Scholar 

  33. 33.

    Rundquist, D. C., Rodekohr, D. A., Peters, A. J., Ehrman, R. L., Di Liping, & Murray, G. (1991). Statewide groundwater-vulnerability assessment in Nebraska using the DRASTIC/GIS model. Geocarto International, 6, 51–58. doi:10.1080/10106049109354307.

    Article  Google Scholar 

  34. 34.

    Sandin, L., & Johnson, R. K. (2004). Local, landscape and regional factors structuring benthic macroinvertebrate assemblages in Swedish streams. Landscape Ecology, 19, 501–514. doi:10.1023/B:LAND.0000036116.44231.1c.

    Article  Google Scholar 

  35. 35.

    Skoulikidis, N. (2002). Typological and qualitative characteristics of Greek-interregional Rivers. Mediterranean Marine Science, 3(1), 79–88.

    Google Scholar 

  36. 36.

    Skoulikidis, N., Gritzalis, K., Kouvarda, T., & Buffagni, A. (2004). The development of an ecological quality assessment and classification system for Greek running waters based on benthic macroinvertebrates. Hydrobiologia, 516, 149–160. doi:10.1023/B:HYDR.0000025263.76808.ac.

    Article  CAS  Google Scholar 

  37. 37.

    Skoulikidis, N., Amaxidis, Y., Bertahas, I., Laschou, S., & Gritzalis, K. (2006a). Analysis of factors driving stream water composition and synthesis of management tools—A case study on small/medium Greek catchments. The Science of the Total Environment, 362, 205–241. doi:10.1016/j.scitotenv.2005.05.018.

    Article  CAS  Google Scholar 

  38. 38.

    Skoulikidis, N., Amaxidis, Y., Bertahas, I., & Laschou, S. (2006b). Nutrient levels and origin in a mountainous catchment. Paper presented at the 8th Panhellenic Symposium of Oceanography and Fisheries, Thessaloniki, Greece, June.

  39. 39.

    Stambuk-Giljanovic, N. (1999). Water quality evaluation by index in Dalmatia. Water Research, 33, 3423–3440. doi:10.1016/S0043-1354(99)00063-9.

    Article  CAS  Google Scholar 

  40. 40.

    Strayer, D. L., Beighley, E. R., Thompson, L. C., Brooks, S., Nilsson, C., Pinay, G., et al. (2003). Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems (New York, NY), 6, 407–423. doi:10.1007/s10021-002-0170-0.

    Article  Google Scholar 

  41. 41.

    Tesoriero, A. J., Inkpen, E. L., & Voss, F. D. (1998). Assessing groundwater vulnerability using logistic regression. Paper presented at the Source Water Assessment and Protection Conference, Dallas, April.

  42. 42.

    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.

    Article  Google Scholar 

  43. 43.

    Verdonschot, P. M. F. (2000). Integrated ecological assessment methods as a basis for sustainable catchment management. Hydrobiologia, 422-423, 389–412. doi:10.1023/A:1017094905369.

    Article  Google Scholar 

  44. 44.

    Vrba, J., & Zoporozec, A. (1994). Guidebook on mapping groundwater vulnerability. International Contributions to Hydrogeology, 16, 131.

    Google Scholar 

  45. 45.

    Ward, J. V. (1998). Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation. Biological Conservation, 83, 269–268. doi:10.1016/S0006-3207(97)00083-9.

    Article  Google Scholar 

  46. 46.

    Winter, T. C., Harvey, J. W., Lehn Franke, O., & Alley, W. M. (1998). Ground water and surface water; a single resource. US Geological Survey Circular 1139.

  47. 47.

    Woli, K. P., Nagumo, T., Kuramochi, K., & Hatano, R. (2004). Evaluating river water quality through land use analysis and N budget approaches in livestock farming areas. The Science of the Total Environment, 329, 61–74. doi:10.1016/j.scitotenv.2004.03.006.

    Article  CAS  Google Scholar 

  48. 48.

    Zalidis, G., Stamatiadis, S., Takavakoglou, V., Eskridge, K., & Misopolinos, N. (2002). Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agriculture Ecosystems & Environment, 88, 137–146. doi:10.1016/S0167-8809(01)00249-3.

    Article  Google Scholar 

  49. 49.

    Zhang, W. L., Tian, Z. X., Zhang, N., & Li, X. Q. (1996). Nitrate pollution of groundwater in northern China. Agriculture Ecosystems & Environment, 59, 223–231. doi:10.1016/0167-8809(96)01052-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The data of this work were collected within the framework of the STAR project. STAR was funded by the European Commission, 5th Framework Program, Energy, Environment and Sustainable Development, Key Action 1: Sustainable Management and Water Quality. (EVK-CT-2001-00089) and by the General Secretariat for Research and Technology, Ministry of Development, Greece. The authors wish to thank the two anonymous reviewers for their valuable comments and suggestions towards the improvement of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ioannis Karaouzas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Karaouzas, I., Dimitriou, E., Skoulikidis, N. et al. Linking Hydrogeological and Ecological Tools for an Integrated River Catchment Assessment. Environ Model Assess 14, 677 (2009). https://doi.org/10.1007/s10666-008-9183-1

Download citation

Keywords

  • Vulnerability
  • Groundwater
  • Hydrogeology
  • Risk assessment
  • Ecological quality
  • Pollution metrics