Skip to main content

Advertisement

Log in

Atmospheric Aerosols over a Southwestern Region of Texas

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Speciated samples of PM2.5 were collected at the Big Bend site from July of 2003 to June 2006 and the McDonald Observatory site from July of 2003 to August of 2005 in southwestern Texas, respectively, by the US Environmental Protection Agency. A total of 175 samples for the Big Bend site and 105 samples for the McDonald Observatory site with 52 species were measured; however, 30 and 32 species from the Big Bend and McDonald Observatory sites, respectively, were excluded because of too much below-detection-limit data. Due to the laboratory change about November 1 of 2004 and possible analytical artifacts, phosphorous was excluded as well. Among the species excluded, 31 species are common to both sites. The two data sets were analyzed by positive matrix factorization to infer the sources of PM observed at the two sites. The analysis resolved five source-related factors for Big Bend and four for McDonald Observatory. Sulfate-rich secondary aerosol, coal burning, motor vehicle/road dust, and a mixed factor were identified as common sources to both sites. The other factor identified for Big Bend is related to soil. Sulfate mainly exists as ammonium salts. The sulfate-rich secondary aerosols account for about 62% and 66% of the PM2.5 mass concentration at the two sites, respectively. The highest concentration of Si associated with Ca, Fe, \({\text{SO}}_4^{2 - } \), and organic carbon at the two sites was possibly attributed to the coal-fired power plants in the region. Basically, the factor of sulfate and coal burning at the two sites showed similar chemical composition profiles and seasonal variation that reflect the regional characteristics of these sources. The regional factors of sulfate, coal burning, and soil showed predominantly low-frequency variations; however, the area-related and/or local factors showed both high and low frequency variations. The motor vehicle/road dust and the mixed factors were likely to be area-related and/or local source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anttila, P., Paatero, P., Tapper, U., & Järvinen, O. (1995). Source identification of bulk wet deposition in Finland by positive matrix factorization. Atmospheric Environment, 29, 1705–1718. doi:10.1016/1352-2310(94)00367-T.

    Article  CAS  Google Scholar 

  2. Ashbaugh, L. L., Malm, W. C., & Sadeh, W. Z. (1985). A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmospheric Environment, 19(8), 1263–1270. doi:10.1016/0004-6981(85)90256-2.

    Article  CAS  Google Scholar 

  3. BRAVO Study. (2004). Big bend regional aerosol and visibility observational study. US EPA, NPS, and TCEQ.

  4. Chiou, P., Tan, W., Lin, C. J., Chu, H. W., & Ho, T. C. (2007). Atmospheric aerosol over a southeastern region of Texas: Chemical composition and possible sources. Environmental Modeling and Assessment. doi:10.1007/s10666-007-9120-8.

  5. Chiou, P., Tan, W., Lin, C. J., Chu, H. W., Tadmor, R., & Ho, T. C. (2008). Atmospheric aerosols over two sites in a southeastern region of Texas. Canadian Journal of Chemical Engineering, 86, 421–435. doi:10.1002/cjce.20047.

    Article  CAS  Google Scholar 

  6. Chueinta, W., Hopke, P. K., & Paatero, P. (2000). Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmospheric Environment, 34, 3319–3329. doi:10.1016/S1352-2310(99)00433-1.

    Article  CAS  Google Scholar 

  7. Efron, B., & Tibshirani, R. L. (1993). An introduction to the bootstrap. London: Chapman and Hall.

    Google Scholar 

  8. Eskridge, R. E., Ku, J. Y., Rao, S. T., Porter, P. S., & Zurbenko, I. G. (1997). Separating different scales of motion in time series of meteorological variables. Bulletin of the American Meteorological Society, 78, 1473–1483. doi:10.1175/1520-0477(1997)078<1473:SDSOMI>2.0.CO;2.

    Article  Google Scholar 

  9. Hansen, D. A., Edgerton, E. S., Hartsell, B. E., Jansen, J. J., Kandasamy, N., Hidy, G. M., et al. (2003). The Southeastern aerosol research and characterization study: Part 1—overview. Journal of the Air & Waste Management Association, 53, 1460–1471.

    CAS  Google Scholar 

  10. Hies, T., Treffeisen, R., Sebald, L., & Reimer, E. (2000). Spectral analysis of air pollutants. Part 1: elemental carbon time series. Atmospheric Environment, 34, 3495–3502. doi:10.1016/S1352-2310(00)00146-1.

    Article  CAS  Google Scholar 

  11. Hopke, P. K. (1985). Receptor modeling in environmental chemistry. New York: John Wiley & Sons.

    Google Scholar 

  12. Hopke, P. K. (1991). Receptor modeling for air quality management. Amsterdam: Elsevier Science.

    Google Scholar 

  13. Hopke, P. K., Lamb, R. E., & Natusch, D. F. S. (1980). Multielemental characterization of urban roadway dust. Environmental Science & Technology, 14, 164–172. doi:10.1021/es60162a006.

    Article  CAS  Google Scholar 

  14. Huber, P. J. (1981). Robust statistics. New York: Wiley.

    Book  Google Scholar 

  15. Juntto, S., & Paatero, P. (1994). Analysis of daily precipitation data by positive matrix factorization. Environmetrics, 5, 127–144. doi:10.1002/env.3170050204.

    Article  Google Scholar 

  16. Kim, E., Hopke, P. K., & Edgerton, E. S. (2003). Source identification of Atlanta aerosol by positive matrix factorization. Journal of the Air & Waste Management Association, 53, 731–739.

    CAS  Google Scholar 

  17. Kim, E., Hopke, P. K., & Edgerton, E. S. (2004). Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment, 38, 3349–3362. doi:10.1016/j.atmosenv.2004.03.012.

    Article  CAS  Google Scholar 

  18. Lee, E., Chan, C. K., & Paatero, P. (1999). Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment, 33, 3201–3212. doi:10.1016/S1352-2310(99)00113-2.

    Article  CAS  Google Scholar 

  19. Liu, W., Wang, Y. H., Armistead, R., & Edgerton, E. S. (2005). Atmospheric aerosol over two urban–rural pairs in the southeastern United States: Chemical composition and possible sources. Atmospheric Environment, 39, 4453–4470. doi:10.1016/j.atmosenv.2005.03.048.

    Article  CAS  Google Scholar 

  20. Paatero, P. (1997). Least squares formulation of robust, non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 37, 23–35. doi:10.1016/S0169-7439(96)00044-5.

    Article  CAS  Google Scholar 

  21. Paatero, P., & Tapper, U. (1993). Analysis of different modes of factor analysis as least squares fit problems. Chemometrics and Intelligent Laboratory Systems, 18, 183–194. doi:10.1016/0169-7439(93)80055-M.

    Article  CAS  Google Scholar 

  22. Paatero, P., & Tapper, U. (1994). Positive matrix factorization: a non-negative factor models with optimal utilization of error estimates of data values. Environmetrics, 5, 111–126. doi:10.1002/env.3170050203.

    Article  Google Scholar 

  23. Pasquill, F. (1974). Atmospheric diffusion. Chichester: Wiley.

    Google Scholar 

  24. Paterson, K. G., Sagady, J. L., Hooper, D. L., Bertman, S. B., Carroll, M. A., & Shepson, P. B. (1999). Analysis of air quality data using positive matrix factorization. Environmental Science & Technology, 33, 635–641. doi:10.1021/es980605j.

    Article  CAS  Google Scholar 

  25. Polissar, A. V., Hopke, P. K., Malm, W. C., & Sisler, J. F. (1996). The ratio of aerosol optical absorption coefficients to sulfur concentrations, as an indicator of smoke from forest fires when sampling in polar regions. Atmospheric Environment, 30, 1147–1157. doi:10.1016/1352-2310(95)00334-7.

    Article  CAS  Google Scholar 

  26. Polissar, A. V., Hopke, P. K., Paatero, P., Kaufman, Y. J., Hall, D. K., Bodhaine, B. A., et al. (1999). The aerosol at Barrow, Alaska: long-term trends and source locations. Atmospheric Environment, 33, 2441–2458. doi:10.1016/S1352-2310(98)00423-3.

    Article  CAS  Google Scholar 

  27. Polissar, A. V., Hopke, P. K., Paatero, P., Malm, W. C., & Sisler, J. F. (1998). Atmospheric aerosol over Alaska: 2. Elemental composition and sources. Journal of Geophysical Research, 103, 19045–19057. doi:10.1029/98JD01212.

    Article  CAS  Google Scholar 

  28. Polissar, A. V., Hopke, P. K., & Poirot, R. L. (2001). Atmospheric aerosol over Vermont: Chemical composition and sources. Environmental Science & Technology, 35, 4604–4621. doi:10.1021/es0105865.

    Article  CAS  Google Scholar 

  29. Prospero, J. M. (2001). African dust in America. Geotimes, 46, 24–27.

    Google Scholar 

  30. Ramadan, Z., Eickhout, B., Song, X. H., Buydens, L. M. C., & Hopke, P. K. (2003). Comparison of positive matrix factorization and multilinear engine for the source apportionment of particulate pollutants. Chemometrics and Intelligent Laboratory Systems, 66, 15–28. doi:10.1016/S0169-7439(02)00160-0.

    Article  CAS  Google Scholar 

  31. Ramadan, Z., Song, X. H., & Hopke, P. K. (2000). Identification of sources of Phoenix aerosol by positive matrix factorization. Journal of the Air & Waste Management Association, 50, 1308–1320.

    CAS  Google Scholar 

  32. Rao, S. T., Zurbenko, I. G., Neagu, R., Porter, P. S., Ku, J. Y., & Henry, R. F. (1997). Space and time scales in ambient ozone data. Bulletin of the American Meteorological Society, 78, 2153–2166. doi:10.1175/1520-0477(1997)078<2153:SATSIA>2.0.CO;2.

    Article  Google Scholar 

  33. Rotach, M. W. (1995). Profiles of turbulence statistics and above an urban street canyon. Atmospheric Environment, 29, 1473–1486. doi:10.1016/1352-2310(95)00084-C.

    Article  CAS  Google Scholar 

  34. Schlink, U., Herbarth, O., & Tetzlaff, G. (1997). A component time-series model for SO2 data: Forecasting, interpretation, and modification. Atmospheric Environment, 31, 1285–1295. doi:10.1016/S1352-2310(96)00306-8.

    Article  CAS  Google Scholar 

  35. Song, X. H., Polissar, A. V., & Hopke, P. K. (2001). Sources of fine particle composition in the northeastern US. Atmospheric Environment, 35, 5277–5286. doi:10.1016/S1352-2310(01)00338-7.

    Article  CAS  Google Scholar 

  36. Sun, L., & Wang, M. (1996). Global warming and global dioxide emission: an empirical study. Journal of Environmental Management, 46, 327–343. doi:10.1006/jema.1996.0025.

    Article  Google Scholar 

  37. US EPA. (2002). SPECIATE version 3.2. US Environmental Protection Agency, Research Triangle Park, NC.

  38. Vermeire, T. G., et al. (1997). European Union system for the evaluation of substances: principles and structure. Chemosphere, 34, 1823–1836. doi:10.1016/S0045-6535(97)00017-9.

    Article  CAS  Google Scholar 

  39. Watson, J. G., Chow, J. C., & Houck, J. E. (2001). PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in northwestern Colorado during 1995. Chemosphere, 43, 1141–1151. doi:10.1016/S0045-6535(00)00171-5.

    Article  CAS  Google Scholar 

  40. Xie, Y. L., Hopke, P. K., Paatero, P., Barrie, L. A., & Li, S. M. (1999). Identification of source nature and seasonal variations of Arctic aerosol by positive matrix factorization. Journal of the Atmospheric Sciences, 56, 249–260. doi:10.1175/1520-0469(1999)056<0249:IOSNAS>2.0.CO;2.

    Article  Google Scholar 

  41. Yakovleva, E., Hopke, P. K., & Wallace, L. (1999). Receptor modeling assessment of PTEAM data. Environmental Science & Technology, 33, 3645–3652. doi:10.1021/es981122i.

    Article  CAS  Google Scholar 

  42. Zheng, M., Cass, G. R., Schauer, J. J., & Edgerton, E. S. (2002). Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environmental Science & Technology, 36, 2361–2371. doi:10.1021/es011275x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the US Department of Agriculture through Sul Ross State University CSREES #2006-38899-03586. The authors wish to thank Professor Hopke of Clarkson University for helpful e-mail communications. The result of this research represents only the authors’ assessments and does not reflect the funding agency’s views on the air quality issues in this region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Chiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiou, P., Tang, W., Lin, CJ. et al. Atmospheric Aerosols over a Southwestern Region of Texas. Environ Model Assess 14, 645–659 (2009). https://doi.org/10.1007/s10666-008-9169-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-008-9169-z

Keywords

Navigation