Environmental Modeling & Assessment

, Volume 14, Issue 4, pp 439–447 | Cite as

Eco-Efficiency of Electric and Electronic Appliances: A Data Envelopment Analysis (DEA)

  • Y. Barba-Gutiérrez
  • B. Adenso-DíazEmail author
  • S. Lozano


Several papers have studied the eco-efficiency of manufacturing systems to address strategic socioeconomic issues in the context of sustainability analysis. Their goal has been to take into account not only environmental impact aspects throughout the whole life cycle but also to incorporate the associated economic value as well, thus, giving a comprehensive vision of both factors. This paper focuses on different commonplace household electric appliances, comparing their eco-efficiency computed using a data envelopment analysis model. We consider the retail price as a measure of the product’s economic value and the ecopoint LCA score as the assessment of its environmental impact. We conclude that cell phones and the bulky analyzed appliances have the highest eco-efficiency scores, whereas the rest would require a more environmentally friendly redesign and/or an increase in their perceived value to improve their eco-efficiency.


Eco-efficiency LCA Data envelopment analysis (DEA) Electric and electronic waste Recycling 



This research was funded by the Spanish Ministry of Science: contract number DPI2007-65827-C02/01. The authors would also like to thank the two anonymous referees and the associated editor for their helpful comments and suggestions.


  1. 1.
    Ahbe, S., Braunschweig, A., & Müller-Wenk, R. (1990). Methodology for ecobalances based on ecological optimization, BUWAL (SAFEL) Environment Series No. 133; Bern.Google Scholar
  2. 2.
    Banker, R. D. (1984). Estimating most productive scale size using data envelopment analysis. European Journal of Operational Research, 17, 35–44.CrossRefGoogle Scholar
  3. 3.
    Chung, Y. R., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: A directional distance function approach. Journal of Environmental Management, 51, 229–240.CrossRefGoogle Scholar
  4. 4.
    Cooper, W. W., Seiford, L. M., & Zhu, J. (2004). Handbook on data envelopment analysis. Boston: Kluwer.Google Scholar
  5. 5.
    Cui, J., & Forssberg, E. (2003). Mechanical recycling of waste electric and electronic equipment: A review. Journal of Hazardous Materials, B99, 243–263.CrossRefGoogle Scholar
  6. 6.
    Dahlbo, H., Ollikainen, M., Koskela, S., & Melanen, M. (2005). The value of old news—managing discarded newspaper. Waste Management World, 75–81, May–June.Google Scholar
  7. 7.
    Doyle, J. R., & Green, R. H. (1991). Comparing products using data envelopment analysis. Omega, 19(6), 631–638.CrossRefGoogle Scholar
  8. 8.
    Dyckhoff, H., & Allen, K. (2001). Measuring ecological efficiency with data envelopment analysis (DEA). European Journal of Operational Research, 132, 312–325.CrossRefGoogle Scholar
  9. 9.
    EEA. (2003). Waste from electrical and electronic equipment (WEEE). European Environment Agency, EEA: Copenhagen.Google Scholar
  10. 10.
    Erkko, S., Melanen, M., & Mickwitz, P. (2005). Eco-efficiency in the Finnish EMAS reports—a buzz word? Journal of Cleaner Production, 13, 799–813.CrossRefGoogle Scholar
  11. 11.
    Färe, R., Grosskopf, S., Lovell, C. A. K., & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: A nonparametric approach. Review of Economics and Statistics, 71(1), 90–98.CrossRefGoogle Scholar
  12. 12.
    Färe, R., Grosskopf, S., & Tyteca, D. (1996). An activity analysis model of the environmental performance of firms—application to fossil-fuel-fired electric utilities. Ecological Economics, 18, 161–175.CrossRefGoogle Scholar
  13. 13.
    Guinée, J. B. (2002). Handbook on life cycle assessment operational guide to the ISO standards (vol. 7). Dordrecht: Kluwer, Book Series Eco-Efficiency in Industry and Science.Google Scholar
  14. 14.
    Herrero, I., & Salmerón, J. L. (2005). Using the DEA methodology to rank software technical efficiency. Communications of the ACM, 48(1), 101–106.CrossRefGoogle Scholar
  15. 15.
    Hofstetter, P. (1998). Perspectives in life cycle impact assessment: A structured approach to combine models of the technosphere, ecosphere and valuesphere. Dordrecht, The Netherlands: Kluwer.Google Scholar
  16. 16.
    Huppes, G., & Ishikawa, M. (2005). A framework for quantified eco-efficiency analysis. Journal of Industrial Ecology, 9(4), 25–41.CrossRefGoogle Scholar
  17. 17.
    ISO—International Standard Organization (1997a). ISO/DIS 14040 environmental management. Life cycle assessment. Principles and structure.Google Scholar
  18. 18.
    ISO—International Standard Organization (1997b). ISO/DIS 14042 environmental management–Life cycle assessment–Life cycle impact assessment.Google Scholar
  19. 19.
    Korhonen, P. J., & Luptacik, M. (2004). Eco-efficiency analysis of power plants: An extension of data envelopment analysis. European Journal of Operational Research, 154, 437–446.CrossRefGoogle Scholar
  20. 20.
    Kuosmanen, T., & Kortelainen, M. (2005). Measuring eco-efficiency of production with data envelopment analysis. Journal of Industrial Ecology, 9(4), 59–72.CrossRefGoogle Scholar
  21. 21.
    Kuosmanen, T., & Kortelainen, M. (2007). Eco-efficiency analysis of consumer durables using absolute shadow prices. Journal of Productivity Analysis, 28, 57–69.CrossRefGoogle Scholar
  22. 22.
    Michelsen, O., Fet, A. M., & Dahlsrud, A. (2006). Eco-efficiency in extended supply chains: A case study of furniture production. Journal of Environmental Management, 79, 290–297.CrossRefGoogle Scholar
  23. 23.
    OECD. (1998). Eco-efficiency. Paris: OECD.Google Scholar
  24. 24.
    Papahristodoulou, C. (1997). A DEA model to evaluate car efficiency. Applied Economics, 29, 1493–1508.CrossRefGoogle Scholar
  25. 25.
    Pré Consultants (2004). Introduction to LCA with SimaPro 6.0. September.Google Scholar
  26. 26.
    Raluy, R. G., Serra, L., Uche, J., & Valero, (2004). A. Life-cycle assessment of desalination technologies integrated with energy production systems. Desalination, 167, 445–458.CrossRefGoogle Scholar
  27. 27.
    Rebitzera, G., Ekvallb, T., Frischknechtc, R., Hunkelerd, D., Norrise, G., Rydbergf, T., et al. (2004). Life cycle assessment. Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30, 701–720.CrossRefGoogle Scholar
  28. 28.
    Reinhard, S., Lovell, C. A. K., & Thijssen, G. J. (2000). Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA. European Journal of Operational Research, 121, 287–303.CrossRefGoogle Scholar
  29. 29.
    Scheel, H. (2000). EMS: Efficiency measurement system, operations research und wirtschaftsinformatik, Universität Dortmund (2000) ( (last accessed 2007-09-03).
  30. 30.
    Schmidheiny, S. (1992). Changing course: A global perspective on development and the environment. Cambridge: MIT Press.Google Scholar
  31. 31.
    SETAC (1993). Guidelines for life-cycle assessment. A code or practice, SETAC Workshop, Sesimbra.Google Scholar
  32. 32.
    Streicher-Porte, M., Widmer, R., Jain, A., Bader, H.-P., Scheidegger, R., & Kytzia, S. (2005). Key drivers of the e-waste recycling system: Assessing and modelling e-waste processing in the informal sector in Delhi. Environmental Impact Assessment Review, 25(5), 472–491.CrossRefGoogle Scholar
  33. 33.
    Thanassoulis, E. (2001). Introduction to the theory and application of data envelopment analysis—A foundation text with integrated software. Norwell, MA: Kluwer.Google Scholar
  34. 34.
    Tsilingiridis, G., Martinopoulos, G., & Kyriakis, N. (2004). Life cycle environmental impact of a thermosyphonic domestic solar hot water system in comparison with electrical and gas water heating. Renewable Energy, 29, 1277–1288.CrossRefGoogle Scholar
  35. 35.
    Udo de Haes, H. A., Finnveden, G., Goedkoop, M., Hauschild, M., Hertwich, E., Hofstetter, P., et al. (2002). Life-cycle impact assessment: Striving towards best practice. Pensacola, FL: SETAC Publications.Google Scholar
  36. 36.
    UNCTAD (2003). A manual for the preparers and users of eco-efficiency indicators. United Nations Conference on Trade and Development, available from: (accessed May 30th 2007).
  37. 37.
    Verfaillie, H. A., & Bidwell, R. (2000). Measuring eco-efficiency. A guide to reporting company performance. World Business Council for Sustainable Development.Google Scholar
  38. 38.
    Zaim, O. (2004). Measuring environmental performance of state manufacturing through changes in pollution intensities: A DEA framework. Ecological Economics, 48, 37–47.CrossRefGoogle Scholar
  39. 39.
    Zhou, P., Ang, B. W., & Poh, K. L. (2006). Slacks-based efficiency measures for modeling environmental performance. Ecological Economics, 60(1), 111–118.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Y. Barba-Gutiérrez
    • 1
  • B. Adenso-Díaz
    • 1
    Email author
  • S. Lozano
    • 2
  1. 1.Escuela Politécnica Superior de IngenieríaUniversidad de OviedoGijónSpain
  2. 2.Escuela Superior de IngenieríaUniversidad de SevillaSevilleSpain

Personalised recommendations