Skip to main content
Log in

Extension of the EUROS Integrated Air Quality Model to Fine Particulate Matter by Coupling to CACM/MADRID 2

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The European Operational Smog (EUROS) integrated air quality modelling system has been extended to model fine particulate matter (PM). From an extended literature study, the Caltech Atmospheric Chemistry Mechanism and the Model of Aerosol Dynamics, Reaction, Ionisation and Dissolution were selected and recently coupled to EUROS. Currently, modelling of mass and chemical composition of aerosols in two size fractions (PM2.5 and PM10–2.5) is possible. The chemical composition is expressed in terms of seven components: ammonium, nitrate, sulphate, elementary carbon, primary inorganic compounds, primary organic compounds and secondary organic compounds. Calculated PM10 concentrations and chemical composition are presented for two summer months of the year 2003 (1 July to 31 August).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Capaldo, K. P., Pilinis, C., & Pandis, S. N. (2000). A computationally efficient hybrid approach for dynamic gas/aerosol transfer in air quality models. Atmospheric Environment, 34, 3617–3627.

    Article  CAS  Google Scholar 

  2. Delobbe, L., Mensink, C., Schayes, G., Passelecq, Quinet, A., Ch., et al. (2002) BelEUROS: Implementation and extension of the EUROS model for policy support in Belgium, Global Change and Sustainable Development, 199-205. Brussels: Federal Science Policy Office.

  3. Deutsch, F., Janssen, L., Vankerkom, J., Lefebre, F., Mensink, C., Fierens, F., et al. (2007) Modelling changes of aerosol compositions over Belgium and Europe. International Journal of Environment and Pollution, in press.

  4. Fredenslund, A., Jones, R. L., & Prausnitz, J. M. (1975) Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal, 21, 1086–1099.

    Article  CAS  Google Scholar 

  5. Gery, M. W., Whitten, G. Z., Killus, J. P., & Dodge, M. C. (1989) A photochemical kinetics mechanism for urban and regional scale computer modeling. Journal of Geophysical Research, 94(D10), 12925–12956.

    Article  CAS  Google Scholar 

  6. Griffin, R. J., Dabdub, D., & Seinfeld, J. H. (2002) Secondary organic aerosol 1. Atmospheric chemical mechanism for production of molecular constituents. Journal of Geophysical Research, 107(D17), 4332, doi:10.1029/2001JD000541.

    Article  CAS  Google Scholar 

  7. McMurry, P. H., & Friedlander, S. K. (1979). New particle formation in the presence of an aerosol. Atmospheric Environment, 13, 1635–1651.

    Article  CAS  Google Scholar 

  8. Meng, Z., Dabdub, D., & Seinfeld, J. H. (1998). Size-resolved and chemically resolved model of atmospheric aerosol dynamics. Journal of Geophysical Research, 103, 3419–3435.

    Article  CAS  Google Scholar 

  9. Mensink, C., Delobbe, L., & Colles, A. (2002). A policy oriented model system for the assessment of long-term effects of emission reductions on ozone. In C. Borrego, & G. Schayes (Eds.), Air pollution modelling and its applications XV (pp. 3–11). Norwell: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  10. Nenes, A., Pandis, S. N., & Pilinis, C. (1998). ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquatic Geochemistry, 4, 123–152.

    Article  CAS  Google Scholar 

  11. Pun, B. K., Griffin, R. J., Seigneur, C., & Seinfeld, J. H. (2002). Secondary organic aerosol 2. Thermodynamic model for gas/particle partitioning of molecular constituents. Journal of Geophysical Research, 107(D17), 4333.

    Article  CAS  Google Scholar 

  12. Pun, B. K., Wu, S.-Y., & Seigneur, C. (2001). Contribution of biogenic emissions to the formation of ozone and partic-ulate matter: Modeling studies in the Nashville, Tennessee and Northeast domains, phase 2 report for CRC Project A-23, document number CP051-01-1. Alpharetta: Coordinating Research Council, Inc.

    Google Scholar 

  13. Saxena, P., Hildemann, L. M., McMurry, P. H., & Seinfeld, J. H. (1995). Organics alter hygroscopic behavior of atmospheric particles. Journal of Geophysical Research, 100, 18755–18770.

    Article  Google Scholar 

  14. Sillanpää, M., Hillamo, R., Saarikoski, S., Frey, A., Pennanen, A., Makkonen, U., et al. (2006). Chemical composition and mass closure of particulate matter at six urban sites in Europe. Atmospheric Environment, 40, S212–S223.

    Article  CAS  Google Scholar 

  15. Vestreng, V., Adams, M., & Goodwin, J. (2004). Inventory review 2004, emission data reported to CLRTAP and under the NEC directive, EMEP/EEA joint review report, EMEP/MSC-W Note 1/2004, ISSN 0804-2446.

  16. VMM (2004a). Lozingen in de lucht 1990–2003, Vlaamse Milieumaatschappij, Aalst, Belgium (in Dutch).

  17. VMM (2004b). Luchtkwaliteit in het Vlaamse Gewest—2003, Vlaamse Milieumaatschappij, Aalst, Belgium (in Dutch).

  18. Zhang, Y., Pun, B., Vijayaraghavan, K., Wu, S.-Y., Seigneur, C., Pandis, S. N., et al. (2004). Development and application of the model of aerosol dynamics, reaction, ionization, and dissolution (MADRID). Journal of Geophysical Research, 109, D01202, doi:10.1029/2003JD003501.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Robert Griffin (University of New Hampshire, Durham) and Donald Dabdub (University of California, Irvine) for providing them with the source code of the CACM chemical mechanism and for helpful discussions and comments during the implementation of the mechanism. We also wish to thank Christian Seigneur and Betty Pun (Atmospheric and Environmental Research, San Ramon, CA) for providing us with the source code of the aerosol module MADRID 2 and for their helpfulness during the implementation phase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Deutsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deutsch, F., Vankerkom, J., Janssen, L. et al. Extension of the EUROS Integrated Air Quality Model to Fine Particulate Matter by Coupling to CACM/MADRID 2. Environ Model Assess 13, 431–437 (2008). https://doi.org/10.1007/s10666-007-9100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-007-9100-z

Keywords

Navigation