Skip to main content

Advertisement

Log in

Application of processed organic municipal solid waste on agricultural land – a scenario analysis

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Source separation, composting and anaerobic digestion, with associated land application, are increasingly being considered as alternative waste management strategies to landfilling and incineration of municipal solid waste (MSW). Environmental life cycle assessments are a useful tool in political decision-making about waste management strategies. However, due to the diversity of processed organic MSW and the situations in which it can be applied, the environmental impacts of land application are very hard to determine by experimental means. In the current study, we used the agroecosystem model Daisy to simulate a range of different scenarios representing different geographical areas, farm and soil types under Danish conditions and legislation. Generally, the application of processed organic MSW resulted in increased emissions compared with the corresponding standard scenarios, but with large differences between scenarios. Emission coefficients for nitrogen leaching to the groundwater ranged from 0.03 to 0.87, while those for nitrogen lost to surface waters through tile drains ranged from 0 to 0.30. Emission coefficients for N2O formation ranged from 0.013 to 0.022 and for ammonia volatilization from 0.016 to 0.11. These estimates are within reasonable range of observed values under similar conditions. Furthermore, a sensitivity analysis showed that the estimates were not very sensitive to the mineralization dynamics of the processed organic MSW. The results show that agroecosystem models can be powerful tools to estimate the environmental impacts of land application of processed MSW under different conditions. Despite this, agroecosystem models have only been used to a very limited degree for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Barth and B. Kroeger, Composting progress in Europe, Biocycle 39 (1998) 65–68.

    Google Scholar 

  2. G.M. Evans, Compost quality and market developments, Biocycle 45 (2004) 52–55.

    Google Scholar 

  3. N. Goldstein, Solid waste composting trends in the United States, Biocycle 44 (2003) 38–44.

    Google Scholar 

  4. EU, Communication from the commission: Towards a thematic strategy on the prevention and recycling of waste, http://europa.eu.int/eur-lex/en/com/cnc/2003/com2003_0301en01.pdf, 2003.

  5. E. Iglesias-Jimenez and C.E. Alvarez, Apparent availability of nitrogen in composted municipal refuse, Biology and Fertility of Soils 16 (1993) 313–318.

    Article  CAS  Google Scholar 

  6. F. Amlinger, B. Gotz, P. Dreher, J. Geszti and C. Weissteiner, Nitrogen in biowaste and yard waste compost: dynamics of mobilisation and availability – a review, European Journal of Soil Biology 39 (2003) 107–116.

    Article  CAS  Google Scholar 

  7. H.A.J. Hoitink and P.C. Fahy, Basis for the control of soilborne plant pathogens with composts, Annual Review of Phytopathology 24 (1986) 93–114.

    Article  Google Scholar 

  8. A.M. Litterick, L. Harrier, P. Wallace, C.A. Watson and M. Wood, The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production – a review, Critical Reviews in Plant Sciences 23 (2004) 453–479.

    Article  Google Scholar 

  9. R. Khaleel, K.R. Reddy and M.R. Overcash, Changes in soil physical-properties due to organic waste applications – a review, Journal of Environmental Quality 10 (1981) 133–141.

    Google Scholar 

  10. P.L. Giusquiani, M. Pagliai, G. Gigliotti, D. Businelli and A. Benetti, Urban waste compost: effects on physical, chemical, and biochemical soil properties, Journal of Environmental Quality 24 (1995) 175–182.

    CAS  Google Scholar 

  11. M.R. Carter and B.A. Stewart, Structure and Organic Matter Storage in Agricultural Soils (CRC press, Boca Raton, 1996).

    Google Scholar 

  12. S.E. Tisdell and V.T. Breslin, Characterization and leaching of elements from municipal solid-waste compost, Journal of Environmental Quality 24 (1995) 827–833.

    Article  CAS  Google Scholar 

  13. V.T. Breslin, Retention of metals in agricultural soils after amending with MSW and MSW-biosolids compost, Water Air and Soil Pollution 109 (1999) 163–178.

    Article  CAS  Google Scholar 

  14. B. Leclerc, P. Georges, B. Cauwel and D. Lairon, A five year study on nitrate leaching under crops fertilized with mineral and organic fertilizers in lysimeters, Biological Agriculture and Horticulture 11 (1995) 301–308.

    Google Scholar 

  15. M. Mamo, C.J. Rosen and T.R. Halbach, Nitrogen availability and leaching front soil amended with municipal solid waste compost, Journal of Environmental Quality 28 (1999) 1074–1082.

    CAS  Google Scholar 

  16. H. De Wever, S. Mussen and R. Merckx, Dynamics of trace gas production following compost and NO3 amendments to soil at different initial TOC/NO3 ratios, Soil Biology and Biochemistry 34 (2002) 1583–1591.

    Article  Google Scholar 

  17. D. Ginting, A. Kessavalou, B. Eghball and J.W. Doran, Greenhouse gas emissions and soil indicators four years after manure and compost applications, Journal of Environmental Quality 32 (2003) 23–32.

    CAS  Google Scholar 

  18. S. Lundie and G.M. Peters, Life cycle assessment of food waste management options, Journal of Cleaner Production 13 (2005) 275–286.

    Article  Google Scholar 

  19. A. Moberg, G. Finnveden, J. Johansson and P. Lind, Life cycle assessment of energy from solid waste – part 2: landfilling compared to other treatment methods, Journal of Cleaner Production 13 (2005) 231–240.

    Article  Google Scholar 

  20. C. Jensen, B. Stougaard and H.S. Ostergaard, Simulation of nitrogen dynamics in farmland areas of Denmark (1989–1993), Soil Use and Management 10 (1994) 111–118.

    Article  Google Scholar 

  21. C.D. Børgesen, J. Djurhuus and A. Kyllingsbaek, Estimating the effect of legislation on nitrogen leaching by upscaling field simulations, Ecological Modelling 136 (2001) 31–48.

    Article  Google Scholar 

  22. J.E. Olesen, G.H. Rubaek, T. Heidmann, S. Hansen and C.D. Borgensen, Effect of climate change on greenhouse gas emissions from arable crop rotations, Nutrient Cycling in Agroecosystems 70 (2004) 147–160.

    Article  CAS  Google Scholar 

  23. H.H. Gerke, M. Arning and H. Stöppler-Zimmer, Modelling long-term compost application effects on nitrate leaching, Plant and Soil 213 (1999) 75–92.

    Article  CAS  Google Scholar 

  24. S. Hansen, H.E. Jensen, N.E. Nielsen and H. Svendsen, Simulation of nitrogen dynamics in the soil–plant system using the Danish simulation model DAISY, Fertilizer Research 27 (1991) 245–259.

    Article  CAS  Google Scholar 

  25. P. de Willigen, Nitrogen turnover in the soil–crop system; comparison of fourteen simulation models, Fertilizer Research 27 (1991) 141–149.

    Article  Google Scholar 

  26. B. Diekkrüger, D. Soendgerath, K.C. Kersebaum and C.W. McVoy, Validity of agroecosystem models: a comparison of results of different models applied to the same data set, Ecological Modelling 81 (1995) 3–29.

    Article  Google Scholar 

  27. P. Smith, J.U. Smith, D.S. Powlson, W.B. McGill, J.R.M. Arah, O.G. Chertov, K. Coleman, U. Franko, S. Frolking, D.S. Jenkinson, L.S. Jensen, R.H. Kelly, H. Klein Gunnewiek, A.S. Komarov, C. Li, J.A.E. Molina, T. Mueller, W.J. Parton, J.H.M. Thornley and A.P. Whitmore, A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments, Geoderma 81 (1997) 153–225.

    Article  Google Scholar 

  28. S. Bruun, B.T. Christensen, E.M. Hansen, J. Magid and L.S. Jensen, Calibration and validation of the soil organic matter dynamics of the Daisy model with data from the Askov long-term experiments, Soil Biology and Biochemistry 35 (2003) 67–76.

    Article  CAS  Google Scholar 

  29. StatBank Denmark, Farms by region and type of farm, http://www.statistikbanken.dk, 2004.

  30. Plantedirektoratet, Vejledning og skemaer 2003/04, http://www.plantedirektoratet.dk, 2003.

  31. DHI, KVL, Dansk Jordbrugsforskning, Watertech, and Landbrugets rådgivningscenter, Standardopstillinger til Daisy-modellen: Vejledning og baggrund, http://www.dina.kvl.dk/~daisy/Daisy_Staabi_ver_1-0.pdf, 2004.

  32. S.E. Simmelsgaard, Vandbalance og kvælstofudvaskning på 4 jordtyper II – vandbalance, aktuel fordampning og afstrømninig til dræn og undergrund, Tidsskrift for Planteavl 89 (1985) 117–131.

    Google Scholar 

  33. T. Heidmann, J. Nielsen, S.E. Olesen, B.T. Christensen and H.S. Østergaard, Ændringer i indhold af kulstof og kvælstof i dyrket jord: resultater fra kvadratnettet 1987–1998, DJF Rapport 54 (2001) 1–73.

    Google Scholar 

  34. S. Bruun and L.S. Jensen, Initialisation of the soil organic matter pools of the Daisy model, Ecological Modelling 153 (2002) 291–295.

    Article  Google Scholar 

  35. E.I. Jiménez and V.P. Garcia, Evaluation of city refuse compost maturity: a review, Biological Wastes 27 (1989) 115–142.

    Article  Google Scholar 

  36. J. Leifeld, S. Siebert and I. Kogel-Knabner, Biological activity and organic matter mineralization of soils amended with biowaste composts, Journal of Plant Nutrition and Soil Science 165 (2002) 151–159.

    Article  CAS  Google Scholar 

  37. M. Chodak, W. Borken, B. Ludwig and F. Beese, Effect of temperature on the mineralization of C and N of fresh and mature compost in sandy material, Journal of Plant Nutrition and Soil Science 164 (2001) 289–294.

    Article  CAS  Google Scholar 

  38. Å. Asdal, T.A. Breland, M.L. Herrero and E. Nordgaard, Frigivningsmønster for plantetilgjengelig nitrogen, Kompostkvalitet-Dokumentasjon og anbefalinger, Planteforsk Grønn Forskning 16, 2002.

  39. M. Dalemo, U. Sonesson, H. Jonsson and A. Bjorklund, Effects of including nitrogen emissions from soil in environmental systems analysis of waste management strategies, Resources Conservation and Recycling 24 (1998) 363–381.

    Article  Google Scholar 

  40. H. Johnsson, L. Bergstrom, P.E. Jansson and K. Paustian, Simulated nitrogen dynamics and losses in a layered agricultural soil, Agriculture, Ecosystems and Environment 18 (1987) 333–356.

    Article  Google Scholar 

  41. S.E. Simmelsgaard, The effect of crop, N-level, soil type and drainage on nitrate leaching from Danish soil, Soil Use and Management 14 (1998) 30–36.

    Article  Google Scholar 

  42. S.E. Simmelsgaard and J. Djurhuus, An empirical model for estimating nitrate leaching as affected by crop type and the long-term N fertilizer rate, Soil Use and Management 14 (1998) 37–43.

    Article  Google Scholar 

  43. A. Freibauer and M. Kaltschmitt, Controls and models for estimating direct nitrous oxide emissions from temperate and sub-boreal agricultural mineral soils in Europe, Biogeochemistry 63 (2003) 93–115.

    Article  CAS  Google Scholar 

  44. S.G. Sommer and N.J. Hutchings, Ammonia emission from field applied manure and its reduction – invited paper, European Journal of Agronomy 15 (2001) 1–15.

    Article  CAS  Google Scholar 

  45. M.N. Hansen, S.G. Sommer and N.P. Madsen, Reduction of ammonia emission by shallow slurry injection: injection efficiency and additional energy demand, Journal of Environmental Quality 32 (2003) 1099–1104.

    CAS  Google Scholar 

  46. IPCC, IPCC Guidelines for National Greenhouse Gas Inventories (International Panel of Climate Change, Paris, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sander Bruun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruun, S., Hansen, T.L., Christensen, T.H. et al. Application of processed organic municipal solid waste on agricultural land – a scenario analysis. Environ Model Assess 11, 251–265 (2006). https://doi.org/10.1007/s10666-005-9028-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-005-9028-0

Keywords

Navigation