Skip to main content

Advertisement

Log in

Connectivity in priority area selection for conservation

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

The spatial relations of sites within networks of priority areas for conservation is critical to the long-term maintenance of key genetic, population and ecosystem processes. However, these relations have received relatively little attention in the development of mathematical methods for objectively identifying such networks. Here we present a novel heuristic for incorporating connectivity explicitly as part of the model constraints, provide an integer linear programming formulation for the same problem, describe an integer cutting procedure which defines a sequence of non-decreasing lower bounds on the optimal solution and report the results of some computational experiments using these algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. J.L. Arthur, M. Hachey, K. Sahr, M. Huso and A.R. Kiester, Finding all optimal solutions to the reserve site selection problem: formulation and computational analysis, Environ. Ecol. Stat. 4 (1997) 153–165.

    Article  Google Scholar 

  2. B. Csuti, S. Polasky, P.H. Williams, R.L. Pressey, J.D. Camm, M. Kershaw, A.R. Kiester, B. Downs, R. Hamilton, M. Huso and K. Sahr, A comparison of reserve selection algorithms using data on terrestrial vertebrates in Oregon, Biol. Conserv. 80 (1997) 83–97.

    Article  Google Scholar 

  3. R.A. Gerrard, R.L. Church, D.M. Stoms and F.W. Davis, Selecting conservation reserves using species-covering models: adapting the ARC/INFO GIS, Trans. GIS 2 (1997) 45–60.

    Article  Google Scholar 

  4. R.L. Pressey, H.P. Possingham and J.R. Day, Effectiveness of alternative heuristic algorithms for identifying indicative minimum requirements for conservation reserves, Biol. Conserv. 80 (1997) 207–219.

    Article  Google Scholar 

  5. M. Cabeza and A. Moilanen, Design of reserve networks and the persistence of biodiversity, Trends Ecol. Evol. 16 (2001) 242–248.

    Article  PubMed  Google Scholar 

  6. P. Williams, D. Gibbons, C. Margules, A. Rebelo, C. Humphries and R. Pressey, A comparison of richness hotspots, rarity hotspots and complementary areas for conserving diversity of British birds, Conserv. Biol. 10 (1996) 155–174.

    Article  Google Scholar 

  7. K.J. Gaston, A.S.L. Rodrigues, B.J. van Rensburg, P. Koleff and S.L. Chown, Complementary representation and zones of ecological transition, Ecol. Lett. 4 (2001) 4–9.

    Article  Google Scholar 

  8. T. Brooks, A. Balmford, N. Burgess, J. Fjeldså, L.A. Hansen, J. Moore, C. Rahbek and P. Williams, Toward a blueprint for conservation in Africa, BioScience 51 (2001) 613–624.

    Article  Google Scholar 

  9. T.J. Cova and R.L. Church, Contiguity constraints for single-region site search problems, Geogr. Anal. 32 (2000) 306–329.

    Article  Google Scholar 

  10. J.C. Williams, A zero–one programming model for contiguous land acquisition, Geogr. Anal. 34 (2002) 330–349.

    Article  Google Scholar 

  11. P. Siitonen, A. Tanskanen and A. Lehtinen, Method for selection of old-forest reserves, Conserv. Biol. 16 (2002) 1398–1408.

    Article  Google Scholar 

  12. P. Siitonen, A. Tanskanen and A. Lehtinen, Selecting forest reserves with a multiobjective spatial algorithm, Environ. Sci. Policy 6 (2003) 301–309.

    Article  Google Scholar 

  13. J.C. Williams and C.S. ReVelle, Reserve assemblage of critical areas: a zero–one programming approach, Eur. J. Oper. Res. 104 (1998) 497–509.

    Article  Google Scholar 

  14. A.O. Nicholls and C.R. Margules, An upgraded reserve selection algorithm, Biol. Conserv. 64 (1993) 165–169.

    Article  Google Scholar 

  15. R.A. Briers, Incorporating connectivity into reserve selection procedures, Biol. Conserv. 103 (2002) 77–83.

    Article  Google Scholar 

  16. H. Önal and R.A. Briers, Incorporating spatial criteria in optimum reserve network selection, Proc. R. Soc. Lond., B Biol. Sci. 269 (2002) 2437–2441.

    Article  Google Scholar 

  17. D.J. Nalle, J.L. Arthur and J. Sessions, Designing compact and contiguous reserve networks with a hybrid heuristic algorithm, For. Sci. 48 (2002) 59–68.

    Google Scholar 

  18. H. Önal and R.A. Briers, Selection of a minimum-boundary reserve network using integer programming, Proc. R. Soc. Lond., B Biol. Sci. 270 (2003) 1487–1491.

    Article  Google Scholar 

  19. H. Possingham, I. Ball and S. Andelman, in: Mathematical Methods for Identifying Representative Reserve Networks, Quantitative Methods for Conservation Biology, eds. S. Ferson and M. Burgman (Springer-Verlag, New York, 2000) pp. 291–306.

    Google Scholar 

  20. M.D. McDonnell, H.P. Possingham, I.R. Ball and E.A. Cousins, Mathematical methods for spatially cohesive reserve design, Environ. Model. Assess. 7 (2002) 107–114.

    Article  Google Scholar 

  21. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, New York, 1976).

    Google Scholar 

  22. F.K. Hwang, D. Richards and P. Winter, The Steiner Tree Problem, Annals of Discrete Mathematics 53 (North Holland, Amsterdam, 1992).

    Google Scholar 

  23. D. Du, J.M. Smith and J.H. Rubinstein, eds., Advances in Steiner Trees, Combinatorial Optimization 6 (Kluwer, Dordrecht, 2000).

    Google Scholar 

  24. H. Prömel and A. Steger, The Steiner Tree Problem. A Tour Through Graphs, Algorithms and Complexity, Advanced Lectures in Mathematics (Vieweg Verlag, Braunschweig, 2002).

    Google Scholar 

  25. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP Completeness (Freeman, San Francisco, 1979).

    Google Scholar 

  26. W.R. Pulleyblank, in: Polyhedral Combinatorics, Mathematical Programming – The State of the Art, eds. A. Bachem, M. Grötschel and B. Korte (Springer, Berlin, 1983) pp. 312–345.

    Google Scholar 

  27. A. Schrijver, in: Polyhedral Combinatorics, Handbook of Combinatorics, eds. R.L. Graham, M. Grötschel and L. Lovász (Elsevier, Amsterdam, 1995) pp. 1649–1704.

    Google Scholar 

  28. J.O. Cerdeira and L.S. Pinto, Requiring connectivity in the set covering problem, J. Comb. Optim. 9 (2005) 35–47.

    Article  Google Scholar 

  29. B. Sawford, The Hertfordshire Butterfly Atlas (Castlemead, Ware, 1987).

    Google Scholar 

  30. C.D. Thomas, D. Jordano, O.T. Lewis, K.J. Hill, O.L. Sutcliffe and J.A. Thomas, in: Butterfly Distributional Patterns, Processes and Conservation, Conservation in a Changing World, eds. G.M. Mace, A. Balmford and J.R. Ginsberg (Cambridge University Press, Cambridge, 1998) pp.107–138.

    Google Scholar 

  31. M.J.R. Cowley, C.D. Thomas, R.J. Wilson, J.L. Leon-Cortes, D. Gutierrez and C.R. Bulman, Density – distribution relationships in British butterflies. II. An assessment of mechanisms, J. Anim. Ecol. 70 (2001) 426–441.

    Article  Google Scholar 

  32. J.K. Hill, Y.C. Collingham, C.D. Thomas, D.S. Blakeley, R. Fox, D. Moss and B. Huntley, Impacts of landscape structure on butterfly range expansion, Ecol. Lett. 4 (2001) 313–321.

    Article  Google Scholar 

  33. A.S.L. Rodrigues, J.O. Cerdeira and K.J. Gaston, Flexibility, efficiency, and accountability: adapting reserve selection algorithms to more complex conservation problems, Ecography 23 (2000) 565–574.

    Article  Google Scholar 

  34. E.W. Dijkstra, A note on two problems in connection with graphs, Numer. Math. 1 (1959) 269–271.

    Article  Google Scholar 

  35. D.A. Saunders and R.J. Hobbs, eds., Nature Conservation 2: The Role of Corridors (Surrey Beatty, Sydney, 1991).

    Google Scholar 

  36. W.D. Newmark, The role and design of wildlife corridors with examples from Tanzania, Ambio 22 (1993) 500–504.

    Google Scholar 

  37. P. Beier and R.F. Noss, Do habitat corridors provide connectivity?, Conserv. Biol. 12 (1998) 1241–1252.

    Article  Google Scholar 

  38. K.J. Gaston, R.L. Pressey and C.R. Margules, Persistence and vulnerability: retaining biodiversity in the landscape and in protected areas, J. Biosci. 27(Suppl. 2) (2002) 361–384.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to I. Faria, S.F. Jackson and A.S.L. Rodrigues for assistance and discussion, and to two anonymous referees whose comments significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Orestes Cerdeira.

Additional information

This author's research was financially supported by the Portuguese foundation for Science and Technology (FCT).

This paper is part of this author's Ph.D. research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerdeira, J.O., Gaston, K.J. & Pinto, L.S. Connectivity in priority area selection for conservation. Environ Model Assess 10, 183–192 (2005). https://doi.org/10.1007/s10666-005-9008-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-005-9008-4

Keywords

Navigation