Skip to main content
Log in

Nonstandard finite difference schemes for linear and non-linear Fokker–Planck equations

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The goal of this paper is to develop a nonstandard finite difference-based numerical technique for solving the one-dimensional linear and non-linear Fokker–Planck equations. Characteristics of the nonstandard finite difference method are presented to understand the development of the proposed method. Conditions for the dynamic consistency of positivity and stability of the schemes are obtained. Numerical experiments have been carried out to demonstrate the competitiveness of the proposed methods in comparison to some existing standard methods. In support of the proposed method and analysis, the \(l_2\) and \(l_\infty \) errors are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Risken H (1996) The Fokker–Planck equation. Springer, Berlin, pp 63–95

    Book  Google Scholar 

  2. Zorzano MP, Mais H, Vázquez L (1998) Numerical solution for Fokker–Planck equations in accelerators. Physica D 113(2–4):379–381

    Article  Google Scholar 

  3. Choe HJ, Ahn C, Kim BJ, Ma Y-K (2013) Copulas from the Fokker–Planck equation. J Math Anal Appl 406(2):519–530

    Article  MathSciNet  Google Scholar 

  4. Kopp A, Büsching I, Strauss RD, Potgieter MS (2012) A stochastic differential equation code for multidimensional Fokker–Planck type problems. Comput Phys Commun 183(3):530–542

    Article  MathSciNet  Google Scholar 

  5. Risken H, Eberly JH (1985) The Fokker-Planck equation, methods of solution and applications. J Opt Soc Am B 2(3):508

    Google Scholar 

  6. Zorzano MP, Mais H, Vazquez L (1999) Numerical solution of two dimensional Fokker–Planck equations. Appl Math Comput 98(2–3):109–117

    MathSciNet  Google Scholar 

  7. Wojtkiewicz SF, Bergman, LA (2000) Numerical solution of high dimensional Fokker–Planck equations. In: 8th ASCE specialty conference on probablistic mechanics and structural reliability, Notre Dame, IN, USA. Citeseer, 2000

  8. Liu S, Li W, Zha H, Zhou H (2022) Neural parametric Fokker–Planck equation. SIAM J Numer Anal 60(3):1385–1449

    Article  MathSciNet  Google Scholar 

  9. Palleschi V, De Rosa M (1992) Numerical solution of the Fokker–Planck equation. II. Multidimensional case. Phys Lett A 163(5–6):381–391

    Article  MathSciNet  Google Scholar 

  10. Dehghan M, Tatari M (2006) The use of He’s variational iteration method for solving a Fokker–Planck equation. Phys Scr 74(3):310

    Article  Google Scholar 

  11. Tatari M, Dehghan M, Razzaghi M (2007) Application of the Adomian decomposition method for the Fokker–Planck equation. Math Comput Model 45(5–6):639–650

    Article  MathSciNet  Google Scholar 

  12. Jafari MA, Aminataei A (2009) Application of homotopy perturbation method in the solution of Fokker–Planck equation. Phys Scr 80(5):055001

    Article  Google Scholar 

  13. Lakestani M, Dehghan M (2009) Numerical solution of Fokker–Planck equation using the cubic b-spline scaling functions. Numeri Methods Partial Differ Equ 25(2):418–429

    Article  MathSciNet  Google Scholar 

  14. Kazem S, Rad JA, Parand K (2012) Radial basis functions methods for solving Fokker–Planck equation. Eng Anal Boundary Elem 36(2):181–189

    Article  MathSciNet  Google Scholar 

  15. Kumar M, Pandit S (2015) An efficient algorithm based on Haar wavelets for numerical simulation of Fokker–Planck equations with constants and variable coefficients. Int J Numer Methods Heat Fluid Flow 25:41–56

    Article  MathSciNet  Google Scholar 

  16. Zanella M (2020) Structure preserving stochastic Galerkin methods for Fokker–Planck equations with background interactions. Math Comput Simul 168:28–47

    Article  MathSciNet  Google Scholar 

  17. Srinivasa K, Rezazadeh H, Adel W (2022) An effective numerical simulation for solving a class of Fokker–Planck equations using Laguerre wavelet method. Math Methods Appl Sci 45(11):6824–6843

    Article  MathSciNet  Google Scholar 

  18. Wang T, Chai G (2022) A fully discrete pseudospectral method for the nonlinear Fokker–Planck equations on the whole line. Appl Numer Math 174:17–33

    Article  MathSciNet  Google Scholar 

  19. Zhang Y, Yuen K-V (2022) Physically guided deep learning solver for time-dependent Fokker–Planck equation. Int J Non-Linear Mech 147:104202

    Article  Google Scholar 

  20. Xu Y, Zhang H, Li Y, Zhou K, Liu Q, Kurths J (2020) Solving Fokker–Planck equation using deep learning. Chaos 30(1):013133

    Article  MathSciNet  Google Scholar 

  21. Zhang H, Xu Y, Liu Q, Wang X, Li Y (2022) Solving Fokker–Planck equations using deep KD-tree with a small amount of data. Nonlinear Dyn 1–15

  22. Brunken J, Smetana K (2022) Stable and efficient Petrov–Galerkin methods for a kinetic Fokker–Planck equation. SIAM J Numer Anal 60(1):157–179

    Article  MathSciNet  Google Scholar 

  23. Tang K, Wan X, Liao Q (2022) Adaptive deep density approximation for Fokker–Planck equations. J Comput Phys 457:111080

    Article  MathSciNet  Google Scholar 

  24. Pareschi L, Zanella M (2018) Structure preserving schemes for nonlinear Fokker–Planck equations and applications. J Sci Comput 74(3):1575–1600

    Article  MathSciNet  Google Scholar 

  25. Duan C, Chen W, Liu C, Wang C, Zhou S (2022) Convergence analysis of structure-preserving numerical methods for nonlinear Fokker–Planck equations with nonlocal interactions. Math Methods Appl Sci 45(7):3764–3781

    Article  MathSciNet  Google Scholar 

  26. Harrison GW (1988) Numerical solution of the Fokker–Planck equation using moving finite elements. Numer Methods Partial Differ Equ 4(3):219–232

    Article  MathSciNet  Google Scholar 

  27. Qian Y, Wang Z, Zhou S (2019) A conservative, free energy dissipating, and positivity preserving finite difference scheme for multi-dimensional nonlocal Fokker–Planck equation. J Comput Phys 386:22–36

    Article  MathSciNet  Google Scholar 

  28. Mickens RE (1994) Nonstandard finite difference models of differential equations. World Scientific, Singapore

    Google Scholar 

  29. Anguelov R, Lubuma JM-S (2001) Contributions to the mathematics of the nonstandard finite difference method and applications. Numer Methods Partial Differ Equ 17(5):518–543

    Article  MathSciNet  Google Scholar 

  30. Mickens RE (1999) An introduction to nonstandard finite difference schemes. J Comput Acoust 7(01):39–58

    Article  Google Scholar 

  31. Mickens RE (2007) Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition. Numer Methods Partial Differ Equ 23(3):672–691

    Article  MathSciNet  Google Scholar 

  32. Lubuma JM-S, Patidar KC (2006) Uniformly convergent non-standard finite difference methods for self-adjoint singular perturbation problems. J Comput Appl Math 191(2):228–238

    Article  MathSciNet  Google Scholar 

  33. Patidar KC, Sharma KK (2006) \(\varepsilon \)-uniformly convergent non-standard finite difference methods for singularly perturbed differential-difference equations with small delay. Appl Math Comput 175(1):864–890

    MathSciNet  Google Scholar 

  34. Patidar KC, Sharma KK (2006) Uniformly convergent non-standard finite difference methods for singularly perturbed differential-difference equations with delay and advance. Int J Numer Methods Eng 66(2):272–296

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Awasthi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neena, A.S., Clemence-Mkhope, D.P. & Awasthi, A. Nonstandard finite difference schemes for linear and non-linear Fokker–Planck equations. J Eng Math 145, 11 (2024). https://doi.org/10.1007/s10665-024-10346-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-024-10346-2

Keywords

Navigation