Skip to main content

Advertisement

Log in

The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We develop a trigonometric scalar auxiliary variable (TSAV) approach for constructing linear, totally decoupled, and energy-stable numerical methods for gradient flows. An auxiliary variable r based on the trigonometric form of the nonlinear potential functional removes the bounded-from-below restriction. By adding a positive constant greater than 1, the positivity preserving property of r can be satisfied. Furthermore, the phase-field variables and auxiliary variable r can be treated in a totally decoupled manner, which simplifies the algorithm. A practical stabilization method is employed to suppress the effect of an explicit nonlinear term. Using our proposed approach, temporally first-order and second-order methods are easily constructed. We prove analytically the discrete energy dissipation laws of the first- and second-order schemes. Furthermore, we propose a multiple TSAV approach for complex systems with multiple components. A comparison of stabilized-SAV (S-SAV) and stabilized-TSAV (S-TSAV) approaches is performed to show their efficiency. Two-dimensional numerical experiments demonstrated the desired accuracy and energy stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28(2): 258–267

  2. Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55:383–405

    Article  MathSciNet  Google Scholar 

  3. Guo Z, Lin P (2015) A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects. J Fluid Mech 766:226–271

    Article  MathSciNet  Google Scholar 

  4. Marth W, Aland S, Voigt A (2016) Margination of white blood cells: a computational approach by a hydrodynamic phase field model. J Fluid Mech 790:389–406

    Article  MathSciNet  Google Scholar 

  5. Wheeler AA, Boettinger WJ, Mcfadden GB (1992) Phase-field model for isothermal phase transitions in binary alloys. Phys Rev A 45:7424–7439

    Article  Google Scholar 

  6. Eyre DJ (1998) Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Bullard JW, Chen LQ (eds) Computational and mathematical models of microstructural evolution. MRS proceedings, Cambridge University Press, vol 529, pp 39–46

  7. Shin J, Lee HG, Lee JY (2017) Convex splitting Runge-Kutta methods for phase-field models. Comput Math Appl 73:2388–2403

    Article  MathSciNet  Google Scholar 

  8. Shin J, Lee HG, Lee JY (2017) Unconditionally stable methods for gradient flow using Convex Splitting Runge-Kutta scheme. J Comput Phys 347:367–381

    Article  MathSciNet  Google Scholar 

  9. Liu Z, Li X (2019) Efficient modified techniques of invariant energy quadratization approach for gradient flows. Appl Math Lett 98:206–214

    Article  MathSciNet  Google Scholar 

  10. Yang J, Kim J (2021) An improved scalar auxiliary variable (SAV) approach for the phase-field surfactant model. Appl Math Model 90:11–29

    Article  MathSciNet  Google Scholar 

  11. Sun M, Feng X, Wang K (2020) Numerical simulation of binary fluid-surfactant phase field model coupled with geometric curvature on the curved surface. Comput Methods Appl Mech Eng 367(1):113123

  12. Shen J, Xu J, Yang J (2018) The scalar auxiliary variable (SAV) approach for gradient flows. J Comput Phys 353:407–416

    Article  MathSciNet  Google Scholar 

  13. Hou D, Azaiez M, Xu C (2019) A variant of scalar auxiliary variable approaches for gradient flows. J Comput Phys 395:307–332

    Article  MathSciNet  Google Scholar 

  14. Huang F, Shen J, Yang Z (2020) A highly efficient and accurate new scalar auxiliary variable approach for gradient flows. SIAM J Sci Comput 42(4):A2514–A2536

    Article  MathSciNet  Google Scholar 

  15. Liu Z, Li X (2021) Step-by-step solving schemes based on scalar auxiliary variable and invariant energy quadratization approaches for gradient flows. Numer Algorithms (in press). https://doi.org/10.1007/s11075-021-01106-9

  16. Liu Z, Li X (2020) The exponential scalar auxiliary variable (E-SAV) approach for phase field models and its explicit computing. SIAM J Sci Comput 42(3):B630–B655

    Article  MathSciNet  Google Scholar 

  17. Yan Y, Chen W, Wang C, Wise SM (2018) A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation. Commun Comput Phys 23:572–602

    Article  MathSciNet  Google Scholar 

  18. Wang S, Chen W, Pan H, Wang C (2020) Optimal rate convergence analysis of a second order scheme for a thin film model with slope selection. J Comput Appl Math 377:112855

  19. Hao Y, Huang Q, Wang C (2020) A third order BDF energy stable linear scheme for the no-slope-selection thin film model (preprint). https://doi.org/10.4208/cicp.OA-2020-0074

  20. Kim J (2012) Phase-field models for multi-component fluid flows. Commun Comput Phys 12(3):613–661

    Article  MathSciNet  Google Scholar 

  21. Shen J, Xu J (2018) Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J Numer Anal 56(5):2895–2912

    Article  MathSciNet  Google Scholar 

  22. Yoon S, Jeong D, Lee C, Kim H, Kim S, Lee HG, Kim J (2020) Fourier-spectral method for the phase-field equations. Mathematics 8(8):1385

    Article  Google Scholar 

  23. Feng X, Tang T, Yang J (2013) Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models. East Asian J Appl Math 3(1):59–80

    Article  MathSciNet  Google Scholar 

  24. Luo F, Tang T, Xie H (2016) Parameter-Free time adaptivity based on energy evolution for the Cahn-Hilliard equation. Commun Comput Phys 19(5):1542–1563

    Article  MathSciNet  Google Scholar 

  25. Cheng K, Feng W, Wang C, Wise SM (2019) An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation. J Comput Appl Math 362:574–595

    Article  MathSciNet  Google Scholar 

  26. Feng W, Guan Z, Lowengrub J, Wang C, Wise SM, Chen Y (2018) A uniquely solvable, energy stable numerical scheme for the functionalized Cahn-Hilliard equation and its convergence analysis. J Sci Comput 76(3):1938–1967

    Article  MathSciNet  Google Scholar 

  27. Guo J, Wang C, Wise SM, Yue X (2016) An \(H^2\) convergence of a second-order convex-splitting, finite difference scheme for the three-dimeniosnal Cahn-Hilliard equation. Commun Math Sci 14(2):489–515

    Article  MathSciNet  Google Scholar 

  28. Diegel AE, Wang C, Wise SM (2016) Stability and convergence of a second-order mixed finite element method for the Cahn-Hilliard equation. IMA J Numer Anal 36(4):1867–1897

    Article  MathSciNet  Google Scholar 

  29. Cheng K, Wang C, Wise SM, Yue X (2016) A second-order, weakly energy-stabe pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method. J Sci Comput 69(3):1083–1114

    Article  MathSciNet  Google Scholar 

  30. Guo J, Wang C, Wise SM, Yue X (2021) An improved error analysis for a second-order numerical scheme for the Cahn–Hilliard equation. J Comput Appl Math 388:113300

  31. Elder K, Katakowski M, Haataja M, Grant M (2002) Modeling elasticity in crystal growth. Phys Rev Lett 88:245701

  32. Cheng K, Wang C, Wise SM (2019) An energy stable BDF2 Fourier Pseudo-Spectral numerical scheme for the square phase field crystal equation (preprint). https://doi.org/10.4208/cicp.2019.js60.10

  33. Xia B, Mei C, Yu Q, Li Y (2020) A second order unconditionally stable scheme for the modified phase field crystal model with elastic interaction and stochastic noise effect. Comput Methods Appl Mech Eng 363:112795

  34. Li Y, Luo C, Xia B, Kim J (2019) An efficient linear second order unconditionally stable direct discretization method for the phase-field crystal equation on surfaces. Appl Math Model 67:477–490

  35. Shin J, Lee HG, Lee JY (2020) Long-time simulation of the phase-field crystal equation using high-order energy stable CSRK methods. Comput Methods Appl Mech Eng 364:112981

  36. Lee HG, Shin J, Lee JY (2017) First- and second-order energy stable methods for the modified phase field crystal equation. Comput Methods Appl Mech Eng 321(1):1–17

    Article  MathSciNet  Google Scholar 

  37. Wise SM, Wang C, Lowengrub JS (2009) An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J Numer Anal 47(3):2269–2288

    Article  MathSciNet  Google Scholar 

  38. Wang C, Wise SM (2011) An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J Numer Anal 49(3):945–969

    Article  MathSciNet  Google Scholar 

  39. Baskaran A, Lowengrub JS, Wang C, Wise SM (2013) Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J Numer Anal 51(5):2851–2873

    Article  MathSciNet  Google Scholar 

  40. Dong L, Feng W, Wang C, Wise SM, Zhang Z (2018) Convergence analysis and numerical implementation of a second order numerical scheme for the three-dimensional phase field crystal equation. Comput Math Appl 75(6):1912–1928

    Article  MathSciNet  Google Scholar 

  41. Lee HG (2019) An energy stable method for the Swift-Hohenberg equation with quadratic-cubic nonlinearity. Comput Methods Appl Mech Eng 343(1):40–51

    Article  MathSciNet  Google Scholar 

  42. Swift J, Hohenberg PC (1977) Hydrodynamic fluctuation at the convective instability. Phys Rev A 15:319–328

    Article  Google Scholar 

  43. Cross MC, Hohenberg PC (1993) Pattern formation outside of equilibrium. Rev Mod Phys 65:851–1112

    Article  Google Scholar 

  44. Kim J (2009) A generalized continuous surface tension force formulation for phase-field models for multi-component immiscible fluid flows. Comput Methods Appl Mech Eng 198:3105–3112

    Article  MathSciNet  Google Scholar 

  45. Li HL, Liu HR, Ding H (2020) A fully 3D simulation of fluid-structure interaction with dynamic wetting and contact angle hysteresis. J Comput Phys 420(1):109709

  46. Zhang JT, Liu HR, Ding H (2020) Head-on collision of two immiscible droplets of different components. Phys Fluids 32:082106

  47. Aihara S, Takaki T, Takada N (2019) Multi-phase-field modeling using a conservative Allen-Cahn equation for multiphase flow. Comput Fluids 178(15):141–151

    Article  MathSciNet  Google Scholar 

  48. Yang J, Kim J (2020) An unconditionally stable second-order accurate method for systems of Cahn–Hilliard equations. Commun Nonlinear Sci Numer Simul 87:105276

  49. Yang J, Li Y, Lee C, Jeong D, Kim J (2019) A conservative finite difference scheme for the \(N\)-component Cahn-Hilliard system on curved surfaces in 3D. J Eng Math 119:149–166

    Article  MathSciNet  Google Scholar 

  50. Li XL, Shen J, Liu ZG (2021) New SAV-pressure correction methods for the Navier–Stokes equations: stability and error analysis

  51. Yang J, Kim J (2021) A variant of stabilized-scalar auxiliary variable (S-SAV) approach for a modified phase-field surfactant model. Comput Phys Commun 261:107825

  52. Chiu PH (2019) A coupled phase field framework for solving incompressible two-phase flows. J Comput Phys 392(1):115–140

    Article  MathSciNet  Google Scholar 

  53. Guo Z, Lin P, Lowengrub J, Wise SM (2017) Mass conservative and energy stable finite difference methods for the quasi-incompressible Navier-Stokes-Cahn-Hilliard system: primitive variable and projection-type schemes. Comput Methods Appl Mech Eng 326:144–174

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

J. Yang was supported by China Scholarship Council (201908260060). The corresponding author (J.S. Kim) was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2019R1A2C1003053). The authors are grateful to the reviewers for their contributions to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Kim, J. The stabilized-trigonometric scalar auxiliary variable approach for gradient flows and its efficient schemes. J Eng Math 129, 18 (2021). https://doi.org/10.1007/s10665-021-10155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10155-x

Keywords

Navigation