Skip to main content
Log in

On asymptotic theory of plane separated flows

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A review of investigations of plane steady external flows of incompressible fluid with developed separation zones at high Reynolds numbers is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Helmholtz H (1868) Über discontinuirliche Flüssigkeits-Bewegungen. Monatsbericht Akad Wiss Berlin April: 215–228

  2. Kirchhoff G (1869) Zur Theorie freier Flüssigkeitsstrahlen. J Reine Angew Math 70(4):289–298

    MathSciNet  MATH  Google Scholar 

  3. Kirchhoff G (1876) Vorlesungen über mathematische Physik: Mechanik, 21Vor. Teubner, Leipzig

  4. Lord Reyleigh (1876) On the resistance of fluids. Philos Mag Ser 5 2:1150–1160

  5. Joukowsky NE (1890) A modification of Kirchhoff’s method of determining a two-dimensional motion of a fluid given a constant velocity along an unknown streamline. Mat Sb 15(1):121–276

    Google Scholar 

  6. Michell JH (1890) On the theory of free stream lines. Philos Trans R Soc Lond A 181:389–431

    Article  MATH  Google Scholar 

  7. Planck M (1884) Zur Theorie der Flüssigkeitsstrahlen. Ann Phys Chem NF 21(3):499–509

    Article  MATH  Google Scholar 

  8. Levi-Civita T (1907) Scie e leggi di resistenza. Rend Circ Matem Palermo 23:1–37

    Article  MATH  Google Scholar 

  9. Prandtl L (1931) Proceedings of 3rd international congress in applied mechanics, Stockholm 1930, vol 1. Ab Sveriges Litogr Tryckerier, Stockholm, pp 41–42

    Google Scholar 

  10. Squire HB (1934) On the laminar flow of a viscous fluid with vanishing viscosity. Philos Mag Ser 7 17:1150–1160

    Article  MATH  Google Scholar 

  11. Imai I (1953) Discontinuous potential flow as the limiting form of the viscous flow for vanishing viscosity. J Phys Soc Jpn 8(3):399–402

    Article  MathSciNet  Google Scholar 

  12. Ackerberg RC (1970) Boundary-layer separation at a free streamline, Part 1. Two-dimensional flow. J Fluid Mech 44(2):211–225

    Article  MathSciNet  MATH  Google Scholar 

  13. Brillouin M (1911) Les surfaces de glissement d’Helmholtz et la résistance des fluides. Ann Chim Phys 8ser 23:145–230

  14. Villat H (1914) Sur la validité des solutions de certains problèmes d’Hydrodynamique. J Math Pures Appl 6ser 10(3):231–290

  15. Wu TY (1968) Inviscid cavity and wake flows. In: Holt M (ed) Basic developments in fluid dynamics, vol 2. Academic Press, New York, pp 1–116

    Google Scholar 

  16. Brodetsky S (1923) Discontinuous fluid motion past circular and elliptic cylinders. Proc R Soc Lond A 102:542–553

    Article  MATH  Google Scholar 

  17. Sychev VicV (2010) To the theory of Kirchhoff-type potential flow around a body. TsAGI Sci J 41(5):531–533

  18. Scheichl B (2014) A note on the far-asymptotics of Helmholtz–Kirchhoff flows. Theor Compat Fluid Dyn 28(3):377–384

    Article  Google Scholar 

  19. Cisotti U (1922) Idromeccanica piana. Parte seconda. Libreria Editrice Politecnica, Milano

    Google Scholar 

  20. Birkhoff G, Zarantonello EH (1957) Jets, wakes, and cavities. Academic Press, New York

    MATH  Google Scholar 

  21. Gurevich MI (1979) The theory of jets in an ideal fluid. Nauka, Moscow

    Google Scholar 

  22. Wu TY (1972) Cavity and wake flows. Ann Rev Fluid Mech 4:243–284

    Article  Google Scholar 

  23. Prandtl L (1905) Über Flüssigkeitsbewegung bei sehz kleiner Reibung. Verh III Intern Math-Kongr, Heidelberg, 1904. Teubner, Leipzig, S 484–491

  24. Howarth L (1938) On the solution of the laminar boundary layer equations. Proc R Soc Lond A 164:547–579

    Article  MATH  Google Scholar 

  25. Hartree DR (1939) A solution of the laminar boundar-layer equation for retarded flow. Aero Res Coun Rep Memo 2426 (issued 1949)

  26. Goldstein S (1948) On laminar boundary-layer flow near a position of separation. Q J Mech Appl Math 1(1):43–69

    Article  MathSciNet  MATH  Google Scholar 

  27. Stewartson K (1970) Is the singularity at separation removable? J Fluid Mech 44(2):347–364

    Article  MATH  Google Scholar 

  28. Terrill RM (1960) Laminar boundary-layer flow near separation with and without suction. Philos Trans R Soc Lond A 253:55–100

    Article  MathSciNet  MATH  Google Scholar 

  29. Rosenhead L (ed) (1963) Laminar boundary layers. Clarendon Press, Oxford

    MATH  Google Scholar 

  30. Van Dyke M (1975) Perturbation methods in fluid mechanics. Prabolic Press, Stanford

    MATH  Google Scholar 

  31. Brown SN, Stewartson K (1969) Laminar separation. Ann Rev Fluid Mech 1:45–72

    Article  Google Scholar 

  32. Sychev VV (1972) Laminar separation. Fluid Dyn 7(3):407–417

    Article  MATH  Google Scholar 

  33. Messiter AF (1975) Laminar separation-a local asymptotic flow description for constant pressure downstream. AGARD CP 168, Flow Separation, paper No 4

  34. Neiland VYa (1969) Theory of laminar boundary layer separation in supersonic flow. Fluid Dyn 4(4):33–35

  35. Stewartson K, Williams PG (1969) Self-induced separation. Proc R Soc Lond A 312:181–206

    Article  MATH  Google Scholar 

  36. Stewartson K (1969) On the flow near the trailing edge of a flat plate II. Mathematika 16(1):106–121

    Article  MATH  Google Scholar 

  37. Messiter AF (1970) Boundary-layer flow near the trailing edge of a flat plate. SIAM J Appl Math 18(1):241–257

    Article  MATH  Google Scholar 

  38. Smith FT (1977) The laminar separation of an incompressible fluid streaming past a smooth surface. Proc R Soc Lond A 356:443–463

    Article  MATH  Google Scholar 

  39. Korolev GL (1980) Numerical solution of the asymptotic problem of laminar boundary-layer separation from a smooth surface. TsAGI Sci J 11(2):27–36

    Google Scholar 

  40. van Dommelen LL, Shen SF (1984) Interactive separation from a fixed wall. In: Cebeci T (ed) Numerrical and physical aspects of aerodynamic flows II. Springer, New York, pp 393–402

    Chapter  Google Scholar 

  41. Ruban AI (2018) Fluid dynamics: part 3 boundary layers. Oxford University Press, Oxford

    MATH  Google Scholar 

  42. Smith FT (1979) Laminar flow of an incompressible fluid past a bluff body: the separation, reattachment, eddy properties and drag. J Fluid Mech 92(1):171–205

    Article  MATH  Google Scholar 

  43. Ruban AI (1974) On laminar separation from a corner point on a solid surface. TsAGI Sci J 5(2):44–54

    Google Scholar 

  44. Ruban AI (1976) A numerical method for solving the free-interaction problem. TsAGI Sci J 7(2):45–51

    Google Scholar 

  45. Sychev VV, Ruban AI, Sychev VicV, Korolev GL (1998) Asymptotic theory of separated flows. Cambridge University Press, Cambridge

  46. Kravtsova MA (1993) Numerical solution of the asymptotic problem of incompressible boundary-layer separation ahead of a body corner point. Comput Math Math Phys 33(3):397–406

    MathSciNet  Google Scholar 

  47. Sychev VV (1967) On steady laminar flow of a fluid around a bluff body at high Reynolds number. In: Proceedings of 8th symposium on current problems of the mechanics of liquids and gases, Tarda, Poland (See TsAGI Sci J (2018) 49 (4): 373–384)

  48. Keulegan GH (1944) Laminar flow at the interface of two liquids. J Res Nat Bur Stand 32(6):303–327

    Article  MathSciNet  MATH  Google Scholar 

  49. Lock RC (1951) The velocity distribution in the laminar boundary layer between parallel streams. Q J Mech Appl Math 4(1):42–63

    Article  MathSciNet  MATH  Google Scholar 

  50. Diesperov VN (1985) On the flow in a Chapman mixing layer. Dokl Akad Nayk SSSR 284(2):305–309

    MathSciNet  MATH  Google Scholar 

  51. Imai I (1957) Theory of bluff bodies. Tech Note BN-104, Inst Fluid Dyn Appl Math, University of Maryland

  52. Van Dyke MD (1956) Second-order subsonic airfoil theory including edge effects. NACA Rep 1274

  53. Sychev VicV (2010) On asymptotic theory of separated flows past bodies. Fluid Dyn 45(3):441–457

  54. Sychev VV (1982) Asymptotic theory of separated flows. Fluid Dyn 17(2):179–188

    Article  Google Scholar 

  55. Ruban AI (1980) Asymptotic theory of flow attachment for viscous incompressible fluid. Fluid Dyn 15(6):844–851

    Article  MathSciNet  MATH  Google Scholar 

  56. Sychev VicV (2001) High Reynolds number flow past a plate mounted at a small angle of attack. Fluid Dyn 36(2):244–261

  57. Kármán Th V (1921) Über laminare und turbulente Reibung. ZAMM 1(4):233–252

  58. Pohlhausen K (1921) Zur näherungsweisen Integration der Differentialgleichung der laminaren Grenzschicht. ZAMM 1(4):252–290

    Article  MATH  Google Scholar 

  59. Roshko A (1967) A review of concepts in separated flows. Proc Can Congr Appl Mech 3:81–115

    Google Scholar 

  60. Riabouchinsky DP (1920) On steady fluid motions with free surfaces. Proc Lond Math Soc Ser 2 19(3):206–215

  61. Yudovich VI (1974) On the loss of smoothness of solutions of the Euler equations with time. Dyn Contin Medium 16:71–78

    MathSciNet  Google Scholar 

  62. Yudovich VI (2000) On gradual loss of smoothness and instability inherent to ideal fluid flows. Dokl Ross Akad Nauk 370(6):760–763

    Google Scholar 

  63. Sychev VicV (2011) On regions of turbulence in separated flows. TsAGI Sci J 42(5):555–563

  64. Schlichting H (1930) Über das ebene Windschattenproblem. Ing-Arch 1(5):533–571

    Article  MATH  Google Scholar 

  65. Roshko A (1954) On the development of turbulent wakes from vortex streets. NACA Rep 1191

  66. Arie M, Rouse H (1956) Experiments on two-dimensional flow over a normal wall. J Fluid Mech 1(2):129–141

    Article  Google Scholar 

  67. Roshko A (1967) Transition in incompressible near-wakes. Phys Fluids Suppl 10 pt II(9):181–183

    Article  Google Scholar 

  68. Roshko A, Fiszdon W (1969) On the persistence of transition in the near-wake. Problems of hydrodynamics and continuum mechanics. Nauka, Moscow, pp 431–438

    Google Scholar 

  69. Sychev VV (1978) Boundary-layer separation from a flat surface. TsAGI Sci J 9(3):20–29

    Google Scholar 

  70. Zubtsov AV (1985) Separation of a laminar boundary layer from a plane surface. TsAGI Sci J 16(5):108–110

    Google Scholar 

  71. Smith FT, Merkin JH (1982) Triple-deck solutions for subsonic flow past humps, steps, concave or convex corners and wedged trailing edges. Comput Fluids 10(1):7–25

    Article  MathSciNet  MATH  Google Scholar 

  72. Sychev VicV (2013) On the theory of the flow around bodies of revolution at high Reynolds numbers. TsAGI Sci J 44(6):727–747

  73. Sychev VicV (1993) Asymptotic theory of vortex breakdown. Fluid Dyn 28(3):356–364

  74. Sychev VicV (2005) On asymptotic theory of vortex breakdown. TsAGI Sci J 36(3–4):13–20

  75. Cheng HK, Smith FT (1982) The influence of airfoil thickness and Reynolds number on separation. ZAMP 33(2):151–180

    MathSciNet  MATH  Google Scholar 

  76. Rothmayer AP, Smith FT (1985) Large-scale separation and hysteresis in cascades. Proc R Soc Lond A 402:83–108

    Article  Google Scholar 

  77. Barnett M (1988) Analysis of crossover between local and massive separation on airfoils. AIAA J 26(5):513–521

    Article  MATH  Google Scholar 

  78. Timoshin SN (1985) Separated flow around a thin profile with parabolic leading edge at high Reynolds number. TsAGI Sci J 16(2):24–32

    Google Scholar 

  79. Sychev VicV (2004) On a separated flow around an arc at high Reynolds numbers. TsAGI Sci J 35(3–4):3–12

  80. Sychev VicV (2006) On the flow around an arc at high Reynolds numbers with formation of local separation regions. TsAGI Sci J 37(1–2):26–33

  81. Cheng HK (1984) Laminar separation from airfoils beyond trailing-edge stall. AIAA Paper 84–1612

  82. Khrabrov AN (1985) Nonuiqueness of laminar separated flow over an airfoil at angle of attack according to the Kirchhoff model. TsAGI Sci J 16(5):1–9

    Google Scholar 

  83. Cheng HK, Lee CJ (1986) Laminar separation studied as an airfoil problem. In: Cebeci T (ed) Numerical and physical aspects of aerodynamic flows III. Springer, New York, pp 102–125

    Chapter  Google Scholar 

  84. Lee CJ, Cheng HK (1990) An airfoil theory of bifurcating laminar separation from thin obstacles. J Fluid Mech 216:255–284

    Article  MATH  Google Scholar 

  85. Chaplygin SA (1899) On the problem of jets in an incompressible fluid. Proc Phys Sect Soc Nat Sci 10(1):35–40

    Google Scholar 

  86. Messiter AF (1979) Boundary-layer separation. In: Proceedings of 8th U.S. Natational Congress in applied mechanics, pp. 157–179. Western Periodicals, North Hollywood

  87. Sychev VicV (2007) Separation zones in the flow near a small-angle convex corner. Fluid Dyn 42(2):221–235

  88. Tulin MP (1964) Supercavitating flows-small perturbation theory. J Ship Res 7(3):16–37

    Article  MathSciNet  Google Scholar 

  89. Korolev GL, Sychev VicV (2017) On a boundary layer in a separated flow region. TsAGI Sci J 48(6):493–504

  90. Sychev VicV (2018) Marginal separation into reverse-flow region. TsAGI Sci J 49(7):683–700

  91. Rothmayer AP, Smith FT (1998) High Reynolds number asymptotic theories. In: Johnson RW (ed) Handbook of fluid dynamics, Part III. CRC Press, Boca Raton

    Google Scholar 

  92. Stewartson K (1974) Multistruetured boundary layers on flat plates and related bodies. Adv Appl Mech 14:145–239

    Article  Google Scholar 

  93. Stewartson K (1981) D’Aembert’s paradox. SIAM Rev 23(3):308–343

    Article  MathSciNet  MATH  Google Scholar 

  94. Smith FT (1982) On the high Reynolds number theory of laminar flows. IMA J Appl Math 28(3):207–281

    Article  MathSciNet  MATH  Google Scholar 

  95. Smith FT (1986) Steady and unsteady boundary-layer separation. Ann Rev Fluid Mech 18:197–220

    Article  MathSciNet  Google Scholar 

  96. Kluwick A (1998) Interacting laminar and turbulent boundary layers. In: Kluwick A (ed) Recent advances in boundary layer theory. Springer, Wien, pp 231–330

    Chapter  MATH  Google Scholar 

  97. Cowley SJ (2001) Laminar boundary-layer theory: a 20th century paradox? In: Aref H, Philips JW (eds) Mechanics for a new millennium. Kluwer, Alphen aan den Rijn, pp 389–412

    Google Scholar 

  98. Neiland VYa, Bogolepov VV, Dudin GN, Lipatov II (2008) Asymptotic theory of supersonic viscous gas flows. Elsevier, Oxford

    Google Scholar 

  99. Adamson TC Jr, Messiter AF (1980) Analysis of two-dimensional interactions between shock waves and boundary layers. Ann Rev Fluid Mech 12:103–138

    Article  MathSciNet  MATH  Google Scholar 

  100. Smith FT (2012) On internal fluid dynamics. Bull Math Sci 2(1):125–180

    Article  MathSciNet  MATH  Google Scholar 

  101. Smith FT (1979) On the non-parallel flow stability of the Blasius boundary layer. Proc R Soc Lond A 366:91–109

    Article  MATH  Google Scholar 

  102. Zhuk VI (2001) Tollmien–Schlichting waves and solitons. Nauka, Moscow

    Google Scholar 

  103. Cowley SJ, Wu X (1994) Asymptotic approaches to transition modeling. In: Progress in transition modeling, AGARD Rep 793. Chap. 3, pp 1–38

  104. Ruban AI (1982) Asymptotic theory of short separation regions on the leading edge of a slender airfoil. Fluid Dyn 17(1):33–41

    Article  MathSciNet  MATH  Google Scholar 

  105. Stewartson K, Smith FT, Kaups K (1982) Marginal separation. Stud Appl Math 67(1):45–61

    Article  MathSciNet  MATH  Google Scholar 

  106. Ruban AI (1981) A singular solution of the boundary layer equations which can be extended continuously through the point of zero surface friction. Fluid Dyn 16(6):835–843

    Article  MathSciNet  MATH  Google Scholar 

  107. Brown SN, Stewartson K (1983) On an integral equation of marginal separation. SIAM J Appl Math 43(5):1119–1126

    Article  MathSciNet  MATH  Google Scholar 

  108. Zametaev VB (1996) Marginal separation in three-dimensional flows. Theor Comput Fluid Dyn 8(3):183–200

    Article  MATH  Google Scholar 

  109. Braun S, Scheichl S (2014) On recent developments in marginal separation theory. Philos Trans R Soc Lond A 372:20130343

Download references

Acknowledgements

The author is grateful to G. L. Korolev for the help during the preparation of this review and to the referees for their great work with my English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vic. V. Sychev.

Ethics declarations

Conflict of interest

The author declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sychev, V.V. On asymptotic theory of plane separated flows. J Eng Math 129, 11 (2021). https://doi.org/10.1007/s10665-021-10101-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10101-x

Keywords

Navigation