Skip to main content
Log in

Radiative–conductive transfer equation in spherical geometry: arithmetic stability for decomposition using the condition number criterion

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The radiative–conductive transfer equation in the \(S_N\) approximation for spherical geometry is solved using a modified decomposition method. The focus of this work is to show how to distribute the source terms in the recursive equation system in order to guarantee arithmetic stability and thus numerical convergence of the obtained solution, guided by a condition number criterion. Some examples are compared with results from literature and parameter combinations are analyzed, for which the condition number analysis indicates convergence of the solutions obtained by the recursive scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ladeia CA, Bodmann BEJ, Vilhena MT (2018) The radiative conductive transfer equation in cylinder geometry: semi-analytical solution and a point analysis of convergence. J Quant Spectrosc Radiat Transf 217:338–352

    Article  Google Scholar 

  2. Siewert CE, Thomas JR Jr (1991) On coupled conductive-radiative heat transfer problems in a sphere. J Quant Spectrosc Radiat Transf 46:63–72

    Article  Google Scholar 

  3. Chandrasekhar S (1950) Radiative transfer. Oxford University Press, New York

    MATH  Google Scholar 

  4. Vilhena MTB, Bodmann BEJ, Segatto CF (2011) Non-linear radiative-conductive heat transfer in a heterogeneous gray plane-parallel participating medium. In: Ahasan A (ed) Convection and conduction heat transfer. InTech, pp 177–196

  5. Elghazaly A (2009) Conductive-radiative heat transfer in a scattering medium with angle-dependent reflective boundaries. J Nucl Radiat Phys 4:31–41

    Google Scholar 

  6. Ozisik MN (1973) Radiative transfer and interaction with conductions and convection. Wiley, New York

    Google Scholar 

  7. Segatto CF, Vilhena MT, Brancher JD (1999) The one-dimensional ltsn formulation for high degree of anisotropy. J Quant Spectrosc Radiat Transf 61:39–43

    Article  Google Scholar 

  8. Brancher JD, Vilhena MT, Segatto CF (1999) The ltsn solution for radiative transfer problem without azimutal symmetry with severe anisotropy. J Quant Spectrosc Radiat Transf 62:43–53

    Article  Google Scholar 

  9. Ladeia CA, Bodmann BEJ, Vilhena MT (2017) On the radiative conductive transfer equation: a heuristic convergence criterion by stability analysis. Integr Methods Sci Eng 1:173–182

    MathSciNet  MATH  Google Scholar 

  10. Trefethen LN, Bau D (1997) Numerical linear algebra. SIAM, Philadelphia

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cibele A. Ladeia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To obtain the maximum norm of \(\mathbf{J}\), we use the \(S_8\) approximation. Note that the discrete directions and the weights satisfy \(|\mu _i|=\mu _{N+1-i}\) , \(\varpi _i = \varpi _{N+1-i}\), for \(i \in [1,4]\), respectively. Furthermore, we consider isotropic scattering (\(\mathfrak {L} = 0\)). The weights obey the following relations \(\varpi _1 < \varpi _j\) with \(j \in [1,3]\):

Then, the maximum norm of matrix \(\mathbf{J}\), with dominant block \(\mathcal {J}\), is

$$\begin{aligned} \kappa = \Vert J\Vert _{\infty } = 4 \mathcal {J} (\omega -1 )\left( \sum _{\ell =0}^{\mathcal {J}} \varTheta _\ell (r)\right) ^3 + 4(\mathcal {J}-1)(\omega -1 )\left( \sum _{\ell =0}^{\mathcal {J}-1} \varTheta _\ell (r)\right) ^3 + 1- \frac{\omega }{2}\varpi _{1} + \frac{\omega }{2}\sum _{p=2}^{N}\varpi _{p} ; \end{aligned}$$
(30)

otherwise, the contribution of Z in the recursive scheme should be analyzed together with the diagonal blocks behaviors. In the following, we illustrate the Jacobian matrix of order \(N^{2}\mathcal {J}^{2} \times N^{2}\mathcal {J}^{2}\).

Some of the blocks of matrices are null matrices, \(\mathbf {0} = \mathbf{J}_{01}= \mathbf{J}_{0(Z-1)}=\mathbf{J}_{1(Z-1)}=\mathbf{J}_{0Z}=\mathbf{J}_{1Z}=\mathbf{J}_{(Z-1)Z}=\mathbf{J}_{0(Z+1)}= \mathbf{J}_{1(Z+1)} = \mathbf{J}_{(Z-1)(Z+1)}= \mathbf{J}_{Z(Z+1)}= \mathbf{J}_{0(\mathcal {J}-1)}= \mathbf{J}_{1(\mathcal {J}-1)}=J_{(Z-1)(\mathcal {J}-1)}=\mathbf{J}_{Z(\mathcal {J}-1)}=\mathbf{J}_{(Z+1)(\mathcal {J}-1)}= \mathbf{J}_{0\mathcal {J}}=\mathbf{J}_{1\mathcal {J}}=\mathbf{J}_{(Z-1)\mathcal {J}}=\mathbf{J}_{Z\mathcal {J}}=\mathbf{J}_{(Z+1)\mathcal {J}}=\mathbf{J}_{(\mathcal {J}-1)\mathcal {J}}\), so that the Jacobian matrix for this problem is a lower triangular matrix.

$$\begin{aligned} \mathbf{J} = \left[ \begin{array}{ccccccccc } \mathbf{J}_{00} &{} \quad \mathbf {0} &{} \quad \cdots &{} \quad \mathbf {0} &{} \quad \mathbf {0} &{} \quad \mathbf {0} &{} \quad \cdots &{} \quad \mathbf {0} &{} \quad \mathbf {0} \\ \mathbf{J}_{10} &{} \quad \mathbf{J}_{11}&{} \quad \cdots &{} \quad \mathbf {0} &{} \quad \mathbf {0} &{} \quad \mathbf {0} &{} \quad \cdots &{} \quad \mathbf {0} &{} \quad \mathbf {0} \\ \vdots &{} \quad \vdots &{} \quad \ddots &{} \quad \vdots &{} \quad \vdots &{} \quad \vdots &{} \quad \ddots &{} \quad \vdots &{} \quad \vdots \\ \mathbf{J}_{(Z-1)0} &{} \quad \mathbf{J}_{(Z-1)1} &{} \quad \cdots &{} \quad \mathbf{J}_{(Z-1)(Z-1)} &{} \quad \mathbf {0} &{} \quad \mathbf {0} &{} \quad \cdots &{} \quad \mathbf {0} &{} \quad \mathbf {0} \\ \mathbf{J}_{Z0} &{} \quad \mathbf{J}_{Z1} &{} \quad \cdots &{} \quad \mathbf{J}_{Z(Z-1)} &{} \quad \mathbf{J}_{ZZ} &{} \quad \mathbf {0} &{} \quad \cdots &{} \quad \mathbf {0}&{} \quad \mathbf {0} \\ \mathbf{J}_{(Z+1)0} &{} \quad \mathbf{J}_{(Z+1)1} &{} \quad \cdots &{} \quad \mathbf{J}_{(Z+1)(Z-1)} &{} \quad \mathbf{J}_{(Z+1)Z} &{} \quad \mathbf{J}_{(Z+1)(Z+1)} &{} \quad \cdots &{} \quad \mathbf {0}&{} \quad \mathbf {0} \\ \vdots &{} \quad \vdots &{} \quad \ddots &{} \quad \vdots &{} \quad \vdots &{} \quad \vdots &{} \quad \ddots &{} \quad \vdots &{} \quad \vdots \\ \mathbf{J}_{(\mathcal {J}-1)0} &{} \quad \mathbf{J}_{(\mathcal {J}-1)1} &{} \quad \cdots &{} \quad \mathbf{J}_{(\mathcal {J}-1)(Z-1)} &{} \quad \mathbf{J}_{(\mathcal {J}-1)Z} &{} \quad \mathbf{J}_{(\mathcal {J}-1)(Z+1)} &{} \quad \cdots &{} \quad \mathbf{J}_{(\mathcal {J}-1)(\mathcal {J}-1)}&{} \quad \mathbf {0} \\ \mathbf{J}_{\mathcal {J}0} &{} \quad \mathbf{J}_{\mathcal {J}1} &{} \quad \cdots &{} \quad \mathbf{J}_{\mathcal {J}(Z-1)} &{} \quad \mathbf{J}_{\mathcal {J}Z} &{} \quad \mathbf{J}_{\mathcal {J}(Z+1)} &{} \quad \cdots &{} \quad \mathbf{J}_{\mathcal {J}(\mathcal {J}-1)} &{} \quad \mathbf{J}_{\mathcal {J}\mathcal {J}} \end{array} \right] \end{aligned}$$
(31)

The diagonal block matrices are generically given by

$$\begin{aligned} \mathbf{J}_{kk} = \left[ \begin{array}{ccccc} 1 &{} \quad 0 &{} \quad 0 &{} \quad \cdots &{} \quad 0\\ (\omega - 1)4(\varTheta _0 + \varTheta _1+ \ldots +\varTheta _k )^3 &{} \quad 1-\frac{\omega }{2}\sum _{l=0}^{\mathfrak {L}}\beta _{l}\mathcal {P}_{l}(\mu _{1})\varpi _{1}\mathcal {P}_{l}(\mu _{1}) &{} \quad -\frac{\omega }{2}\sum _{l=0}^{\mathfrak {L}}\beta _{l}\mathcal {P}_{l}(\mu _{2})\varpi _{2}\mathcal {P}_{l}(\mu _{2}) &{} \quad \cdots &{} \quad -\frac{\omega }{2}\sum _{l=0}^{\mathfrak {L}}\beta _{l}\mathcal {P}_{l}(\mu _{N})\varpi _{N}\mathcal {P}_{l}(\mu _{N})\\ (\omega - 1)4(\varTheta _0 + \varTheta _1+ \ldots +\varTheta _k )^3 &{} \quad -\frac{\omega }{2}\sum _{l=0}^{\mathfrak {L}}\beta _{l}\mathcal {P}_{l}(\mu _{1})\varpi _{1}\mathcal {P}_{l}(\mu _{1}) &{} \quad 1-\frac{\omega }{2}\sum _{l=0}^{\mathfrak {L}}\beta _{l}\mathcal {P}_{l}(\mu _{2})\varpi _{2}\mathcal {P}_{l}(\mu _{2}) &{} \quad \cdots &{} \quad -\frac{\omega }{2}\sum _{l=0}^{\mathfrak {L}}\beta _{l}\mathcal {P}_{l}(\mu _{N})\varpi _{N}\mathcal {P}_{l}(\mu _{N})\\ \vdots &{} \quad \vdots &{} \quad \vdots &{} \quad \ddots &{} \quad \vdots \\ (\omega - 1)4(\varTheta _0 + \varTheta _1+ \ldots +\varTheta _k )^3 &{} \quad -\frac{\omega }{2}\sum _{l=0}^{\mathfrak {L}}\beta _{l}\mathcal {P}_{l}(\mu _{1})\varpi _{1}\mathcal {P}_{l}(\mu _{1}) &{} \quad -\frac{\omega }{2}\sum _{l=0}^{\mathfrak {L}}\beta _{l}\mathcal {P}_{l}(\mu _{2})\varpi _{2}\mathcal {P}_{2}(\mu _{2}) &{} \quad \cdots &{} \quad 1-\frac{\omega }{2}\sum _{l=0}^{\mathfrak {L}}\beta _{l}\mathcal {P}_{l}(\mu _{N})\varpi _{N}\mathcal {P}_{l}(\mu _{N})\\ \end{array} \right] \end{aligned}$$

Another set of block matrices are equal, \(\mathbf{J}_{(\mathcal {J}-1)0}= \mathbf{J}_{(\mathcal {J}-1)1}=\cdots = \mathbf{J}_{(\mathcal {J}-1)(Z-1)}= \mathbf{J}_{(\mathcal {J}-1)Z}=\mathbf{J}_{(\mathcal {J}-1)(Z+1)}\), and \(\mathbf{J}_{\mathcal {J}0} = \mathbf{J}_{\mathcal {J}1}= \ldots = \mathbf{J}_{\mathcal {J}(Z-1)}= \mathbf{J}_{\mathcal {J}Z}= \mathbf{J}_{\mathcal {J}(Z+1)}\), with

$$\begin{aligned} \mathbf{J}_{k0} = \left[ \begin{array}{ccccc} 0 &{} \quad 0 &{} \quad 0 &{} \quad \cdots &{} \quad 0 \\ (\omega - 1)4[(\varTheta _0 + \varTheta _1+ \ldots +\varTheta _k )^3 - (\varTheta _0 + \varTheta _1+ \ldots +\varTheta _{k-1} )^3] &{} \quad 0 &{} \quad 0 &{} \quad \cdots &{} \quad 0\\ (\omega - 1)4[(\varTheta _0 + \varTheta _1+ \ldots +\varTheta _k )^3 - (\varTheta _0 + \varTheta _1+ \ldots +\varTheta _{k-1} )^3] &{} \quad 0 &{} \quad 0 &{} \quad \cdots &{} \quad 0\\ \vdots &{} \quad \vdots &{} \quad \vdots &{} \quad \ddots &{} \quad \vdots \\ (\omega - 1)4[(\varTheta _0 + \varTheta _1+ \ldots +\varTheta _k )^3 - (\varTheta _0 + \varTheta _1+ \ldots +\varTheta _{k-1} )^3] &{} \quad 0 &{} \quad 0 &{} \quad \cdots &{} \quad 0\\ \end{array} \right] . \end{aligned}$$

For \(j \in [1, k-1]\)

$$\begin{aligned} \mathbf{J}_{(k+1)j} = \left[ \begin{array}{ccccc} 0 &{} \quad \frac{\alpha }{4\pi }\mu _1\varpi _{1}(R-r) &{} \quad \frac{\alpha }{4\pi }\mu _2\varpi _{2}(R-r) &{} \quad \cdots &{} \quad \frac{\alpha }{4\pi }\mu _N\varpi _{N}(R-r) \\ (\omega - 1)4[(\varTheta _0 + \varTheta _1+ \ldots +\varTheta _k )^3 - (\varTheta _0 + \varTheta _1+ \ldots +\varTheta _{k-1} )^3] &{} \quad 0 &{} \quad 0 &{} \quad \cdots &{} \quad 0\\ (\omega - 1)4[(\varTheta _0 + \varTheta _1+ \ldots +\varTheta _k )^3 - (\varTheta _0 + \varTheta _1+ \ldots +\varTheta _{k-1} )^3] &{} \quad 0 &{} \quad 0 &{} \quad \cdots &{} \quad 0\\ \vdots &{} \quad \vdots &{} \quad \vdots &{} \quad \ddots &{} \quad \vdots \\ (\omega - 1)4[(\varTheta _0 + \varTheta _1+ \ldots +\varTheta _k )^3 - (\varTheta _0 + \varTheta _1+ \ldots +\varTheta _{k-1} )^3] &{} \quad 0 &{} \quad 0 &{} \quad \cdots &{} \quad 0\\ \end{array} \right] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladeia, C.A., Bodmann, B.E.J. & Vilhena, M.T. Radiative–conductive transfer equation in spherical geometry: arithmetic stability for decomposition using the condition number criterion. J Eng Math 123, 149–163 (2020). https://doi.org/10.1007/s10665-020-10059-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-020-10059-2

Keywords

Navigation