Skip to main content
Log in

The unstable temporal development of axi-symmetric jets of incompressible fluid

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We study the shear-driven instability, of Kelvin–Helmholtz type, that forms at the interface between a cylindrical jet of flowing fluid and its surroundings. The results of an infinitesimal-amplitude theory based on linearising the system about the undisturbed jet are given. A novel numerical model based on the Galerkin spectral method is developed and employed to simulate the non-linear development of the jet in the weakly-compressible Boussinesq regime. Representative results demonstrating the viability of this model are given, and are shown to agree with the linear analysis for small disturbances, but to develop cylindrical roll-up in the severely non-linear regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Available freely online from https://au.mathworks.com/matlabcentral/fileexchange/4540-legendre-gauss-quadrature-weights-and-nodes?s_tid=prof_contriblnk.

References

  1. Strutt JW, Rayleigh Lord (1878) On the instability of jets. Proc Lond Math Soc 1(1):4–13

    MathSciNet  Google Scholar 

  2. Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Prog Phys 71(3):36–61

    Article  Google Scholar 

  3. Osborne T, Forbes LK (2001) Large amplitude axisymmetric capillary waves. In: IUTAM symposium on free surface flows, pp 221–228

    Google Scholar 

  4. Drazin PG, Reid WH (1981) Hydrodynamic stability. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  5. Batchelor G, Gill AE (1962) Analysis of the stability of axisymmetric jets. J Fluid Mech 14(4):529–551

    Article  MathSciNet  MATH  Google Scholar 

  6. Mattingly GE, Chang CC (1974) Unstable waves on an axisymmetric jet column. J Fluid Mech 65(3):541–560

    Article  MATH  Google Scholar 

  7. Keller JB, Rubinow S, Tu Y (1973) Spatial instability of a jet. Phys Fluids 16(12):2052–2055

    Article  MATH  Google Scholar 

  8. Danaila I, Dušek J, Anselmet F (1997) Coherent structures in a round, spatially evolving, unforced, homogeneous jet at low Reynolds numbers. Phys Fluids 9(11):3323–3342

    Article  Google Scholar 

  9. Becker HA, Massaro T (1968) Vortex evolution in a round jet. J Fluid Mech 31(3):435–448

    Article  Google Scholar 

  10. Hocking G, Forbes L (2010) Steady flow of a buoyant plume into a constant-density layer. J Eng Math 67(4):341–350

    Article  MathSciNet  MATH  Google Scholar 

  11. Forbes LK, Hocking GC (2013) Unsteady plumes in planar flow of viscous and inviscid fluids. J Appl Math 78(2):206–234

    MathSciNet  MATH  Google Scholar 

  12. Letchford NA, Forbes LK, Hocking GC (2012) Inviscid and viscous models of axisymmetric fluid jets or plumes. ANZIAM J 53(3):228–250

    Article  MathSciNet  MATH  Google Scholar 

  13. Chandrasekhar S (1981) Hydrodynamic and hydromagnetic stability. Dover Publications Inc., New York

    MATH  Google Scholar 

  14. Siegel M (1995) A study of singularity formation in the Kelvin–Helmholtz instability with surface tension. SIAM J. Appl. Math. 55(4):865–891

    Article  MathSciNet  MATH  Google Scholar 

  15. Moore D (1979) The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc R Soc Lond A 365(1720):105–119

    Article  MathSciNet  MATH  Google Scholar 

  16. Batchelor GK (1970) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  17. Krasny R (1986) Desingularization of periodic vortex sheet roll-up. J Comput Phys 65(2):292–313

    Article  MathSciNet  MATH  Google Scholar 

  18. Chorin AJ, Bernard PS (1973) Discretization of a vortex sheet, with an example of roll-up. J Comput Phys 13(3):423–429

    Article  MATH  Google Scholar 

  19. Baker GR, Shelley MJ (1990) On the connection between thin vortex layers and vortex sheets. J Fluid Mech 215:161–194

    Article  MathSciNet  MATH  Google Scholar 

  20. Drazin PG (1958) The stability of a shear layer in an unbounded heterogeneous inviscid fluid. J Fluid Mech 4(2):214–224

    Article  MathSciNet  MATH  Google Scholar 

  21. Tryggvason G, Dahm WJA, Sbeih K (1991) Fine structure of vortex sheet roll-up by viscous and inviscid simulation. J Fluids Eng 113(1):31–36

    Article  Google Scholar 

  22. Chen MJ, Forbes LK (2011) Accurate methods for computing inviscid and viscous Kelvin–Helmholtz instability. J Comput Phys 230(4):1499–1515

    Article  MathSciNet  MATH  Google Scholar 

  23. Andersson N, Comer GL, Prix R (2003) Are pulsar glitches triggered by a superfluid two-stream instability? Phys Rev Lett 90(9):91–101

    Article  Google Scholar 

  24. Forbes LK (2011) A cylindrical Rayleigh–Taylor instability: radial outflow from pipes or stars. J Eng Math 70(1–3):205–224

    Article  MathSciNet  MATH  Google Scholar 

  25. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover Publications Inc., New York

    MATH  Google Scholar 

  26. Spiegel EA, Veronis G (1960) On the Boussinesq approximation for a compressible fluid. Astrophys J 131:442

    Article  MathSciNet  Google Scholar 

  27. Hussaini MY, Zang TA (1987) Spectral methods in fluid dynamics. Annu Rev Fluid Mech 19(1):339–367

    Article  MATH  Google Scholar 

  28. Canuto C, Hussaini MY, Quarteroni A, Zang TA (2012) Spectral methods in fluid dynamics. Springer, New York

    MATH  Google Scholar 

  29. Boyd JP (2001) Chebyshev and Fourier spectral methods. Dover Publications Inc., New York

    MATH  Google Scholar 

  30. Kreyszig E (2010) Advanced engineering mathematics. Wiley, New York

    MATH  Google Scholar 

  31. Atkinson KE (2008) An introduction to numerical analysis. Wiley, New York

    Google Scholar 

  32. Michalke A (1984) Survey on jet instability theory. Prog Aerosp Sci 21:159–199

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the scholarly assistance of Prof. A. Bassom and Dr S. Walters, as well as the financial assistance of the G.F.R. Ellis Memorial and Tasmania Graduate Research Scholarships. The critical comments from three Anonymous Reviewers improved the presentation and results of this paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Earl S. Lester.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lester, E.S., Forbes, L.K. The unstable temporal development of axi-symmetric jets of incompressible fluid. J Eng Math 120, 29–42 (2020). https://doi.org/10.1007/s10665-019-10030-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-019-10030-w

Keywords

Navigation