Journal of Engineering Mathematics

, Volume 115, Issue 1, pp 141–156 | Cite as

Exact, approximate and asymptotic solutions of the Klein–Gordon integral equation

  • V. I. FabrikantEmail author
  • E. Karapetian
  • S. V. Kalinin


Interaction of the highly localized probe of scanning probe microscopy with solid surfaces with mobile electronic or ionic carriers leads to the redistribution of mobile carriers at the tip surface junction. For small probe biases, this problem is equivalent to the Debye screening, described by Klein–Gordon (K–G) integral equation. Here, an exact solution to the K–G equation is derived for the case of a circle in the form of a convergent series expansion of the solution, which is effective for relatively small values of the inverse Debye length, k. Also, a reasonably accurate solution is derived for large values of parameter k by using the method of collocation. A surprisingly simple asymptotic solution is derived for very large values of k, which is valid for the arbitrary right-hand side of the equation. The same methods can be used for the case of elliptic domain.


Exact solution Integral equations Klein–Gordon Potential theory Series expansion 



This research was sponsored by the Division of Materials Sciences and Engineering, Basic Energy Sciences, in the U.S. Department of Energy. A portion of this research was conducted at the Center for Nanophase Materials Sciences which is a DOE Office of Science User Facility.


  1. 1.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933Google Scholar
  2. 2.
    Binnig G, Rohrer H, Gerber C, Weibel E (1983) \(7\times 7\) reconstruction on Si (111) resolved in real space. Phys Rev Lett 50(2):120–123Google Scholar
  3. 3.
    Gerber C, Lang HP (2006) How the doors to the nanoworld were opened. Nat Nanotechnol 1(1):3–5Google Scholar
  4. 4.
    Alvarez T, Kalinin SV, Bonnell DA (2001) Magnetic-field measurements of current-carrying devices by force-sensitive magnetic-force microscopy with potential correction. Appl Phys Lett 78(7):1005–1007Google Scholar
  5. 5.
    Grutter P, Liu Y, LeBlanc P, Durig U (1997) Magnetic dissipation force microscopy. Appl Phys Lett 71(2):279–281Google Scholar
  6. 6.
    Albrecht TR, Grutter P, Horne D, Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69(2):668–673Google Scholar
  7. 7.
    Martin Y, Wickramasinghe HK (1987) Magnetic imaging by “force microscopy” with 1000 Å resolution. Appl Phys Lett 50(20):1455–1457Google Scholar
  8. 8.
    Fujihira M (1999) Kelvin probe force microscopy of molecular surfaces. Annu Rev Mater Sci 29:353–380Google Scholar
  9. 9.
    Sommerhalter C, Matthes TW, Glatzel T, Jager-Waldau A, Lux-Steiner MC (1999) High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy. Appl Phys Lett 75(2):286–288Google Scholar
  10. 10.
    Kitamura S, Iwatsuki M (1998) High-resolution imaging of contact potential difference with ultrahigh vacuum noncontact atomic force microscope. Appl Phys Lett 72(24):3154–3156Google Scholar
  11. 11.
    Tanimoto M, Vatel O (1996) Kelvin probe force microscopy for characterization of semiconductor devices and processes. J Vac Sci Technol B 14(2):1547–1551Google Scholar
  12. 12.
    Vatel O, Tanimoto M (1995) Kelvin probe force microscopy for potential distribution measurement of semiconductor devices. J Appl Phys 77(6):2358–2362Google Scholar
  13. 13.
    Nonnenmacher M, Oboyle MP, Wickramasinghe HK (1991) Kelvin probe force microscopy. Appl Phys Lett 58(25):2921–2923Google Scholar
  14. 14.
    Guo SL, Kalinin SV, Jesse S (2012) Open-loop band excitation Kelvin probe force microscopy. Nanotechnology 23(12):125704Google Scholar
  15. 15.
    Guo SL, Kalinin SV, Jesse S (2012) Half-harmonic Kelvin probe force microscopy with transfer function correction. Appl Phys Lett 100(6):063118Google Scholar
  16. 16.
    Sadewasser ES, Glatzel T (2011) Kelvin probe force microscopy. Springer, New YorkGoogle Scholar
  17. 17.
    Hurley DC, Shen K, Jennett NM, Turner JA (2003) Atomic force acoustic microscopy methods to determine thin-film elastic properties. J Appl Phys 94(4):2347–2354Google Scholar
  18. 18.
    Rabe U, Kopycinska M, Hirsekorn S, Saldana JM, Schneider GA, Arnold W (2002) High-resolution characterization of piezoelectric ceramics by ultrasonic scanning force microscopy techniques. J Phys D 35(20):2621–2635Google Scholar
  19. 19.
    Liu XX, Heiderhoff R, Abicht HP, Balk LJ (2002) Scanning near-field acoustic study of ferroelectric BaTiO3 ceramics. J Phys D 35(1):74–87Google Scholar
  20. 20.
    Drobek T, Stark RW, Heckl WM (2001) Determination of shear stiffness based on thermal noise analysis in atomic force microscopy: passive overtone microscopy. Phys Rev B 64(4):045401Google Scholar
  21. 21.
    Rabe U, Arnold W (1994) Acoustic microscopy by atomic force microscopy. Appl Phys Lett 64(12):1493–1495Google Scholar
  22. 22.
    Kalinin SV, Morozovska AN, Chen LQ, Rodriguez BJ (2010) Local polarization dynamics in ferroelectric materials. Rep Progr Phys 73(5):056502Google Scholar
  23. 23.
    Kalinin SV, Bonnell DA (2002) Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys Rev B 65(12):125408Google Scholar
  24. 24.
    Chen XQ, Yamada H, Horiuchi T, Matsushige K (1999) Investigation of surface potential of ferroelectric organic molecules by scanning probe microscopy. Jpn J Appl Phys Part 1 38(6B):3932–3935Google Scholar
  25. 25.
    Gruverman AL, Hatano J, Tokumoto H (1997) Scanning force microscopy studies of domain structure in BaTiO3 single crystals. Jpn J Appl Phys Part 1 36(4A):2207–2211Google Scholar
  26. 26.
    Kalinin SV, Rar A, Jesse S (2006) A decade of piezoresponse force microscopy: progress, challenges, and opportunities. IEEE Trans Ultrason Ferroelectr Freq Control 53(12):2226–2252Google Scholar
  27. 27.
    Kalinin SV, Jesse S, Rodriguez BJ, Seal K, Baddorf AP, Zhao T, Chu YH, Ramesh R, Eliseev EA, Morozovska AN, Mirman B, Karapetian E (2007) Recent advances in electromechanical imaging on the nanometer scale: polarization dynamics in ferroelectrics, biopolymers, and liquid imaging. Jpn J Appl Phys Part 1 46(9A):5674–5685Google Scholar
  28. 28.
    Gruverman A, Kalinin SV (2006) Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. J Mater Sci 41(1):107–116Google Scholar
  29. 29.
    Balke N, Bdikin I, Kalinin SV, Kholkin AL (2009) Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J Am Ceram Soc 92(8):1629–1647Google Scholar
  30. 30.
    O’Hayre R, Lee M, Prinz FB (2004) Ionic and electronic impedance imaging using atomic force microscopy. J Appl Phys 95(12):8382–8392Google Scholar
  31. 31.
    Shao R, Kalinin SV, Bonnell DA (2003) Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy. Appl Phys Lett 82(12):1869–1871Google Scholar
  32. 32.
    Pingree LSC, Martin EF, Shull KR, Hersam MC (2005) Nanoscale impedance microscopy—a characterization tool for nanoelectronic devices and circuits. IEEE Trans Nanotechnol 4(2):255–259Google Scholar
  33. 33.
    Garcia R, Knoll AW, Riedo E (2014) Advanced scanning probe lithography. Nat Nanotechnol 9(8):577–587Google Scholar
  34. 34.
    Garcia R, Calleja M, Perez-Murano F (1998) Local oxidation of silicon surfaces by dynamic force microscopy: nanofabrication and water bridge formation. Appl Phys Lett 72(18):2295–2297Google Scholar
  35. 35.
    Garcia R, Martinez RV, Martinez J (2006) Nano-chemistry and scanning probe nanolithographies. Chem Soc Rev 35(1):29–38Google Scholar
  36. 36.
    Lee W, Lee M, Kim YB, Prinz FB (2009) Reduction and oxidation of oxide ion conductors with conductive atomic force microscopy. Nanotechnology 20(44):445706Google Scholar
  37. 37.
    Arruda TM, Kumar A, Kalinin SV, Jesse S (2011) Mapping irreversible electrochemical processes on the nanoscale: ionic phenomena in Li ion conductive glass ceramics. Nano Lett 11(10):4161–4167Google Scholar
  38. 38.
    Arruda TM, Kumar A, Kalinin SV, Jesse S (2012) The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries. Nanotechnology 23(32):325402Google Scholar
  39. 39.
    Lee M, O’Hayre R, Prinz FB, Gur TM (2004) Electrochemical nanopatterning of Ag on solid-state ionic conductor Rb Ag4 I5 using atomic force microscopy. Appl Phys Lett 85(16):3552–3554Google Scholar
  40. 40.
    Bao W, Melli M, Caselli N, Riboli F, Wiersma DS, Staffaroni M, Choo H, Ogletree DF, Aloni S, Bokor J, Cabrini S, Intonti F, Salmeron MB, Yablonovitch E, Schuck PJ, Weber-Bargioni A (2012) Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 338(6112):1317–1321Google Scholar
  41. 41.
    Fabrikant VI (1989) Applications of potential theory in mechanics. Kluwer Academic Publishers, DordrechtzbMATHGoogle Scholar
  42. 42.
    Fabrikant VI (1991) Mixed boundary value problems of potential theory and their applications in engineering. Kluwer Academic Publishers, DordrechtzbMATHGoogle Scholar
  43. 43.
    Fabrikant VI (2010) Contact and crack problems in linear theory of elasticity. Bentham Science Publishers, SharjahGoogle Scholar
  44. 44.
    Kalinin SV, Karapetian E, Kachanov M (2004) Nanoelectromechanics of piezoresponse force microscopy. Phys Rev B 70(18):184101Google Scholar
  45. 45.
    Kalinin SV, Shin J, Kachanov M, Karapetian E, Baddorf AP (2004) Nanoelectromechanics of Piezoresponse Force Microscopy: contact properties, fields below the surface and polarization switching. In: Hoffmann-Eifert S, Funakubo H, Joshi V, Kingon AI, Koutsaroff IP (eds) Ferroelectric Thin Films Xii, vol 784, pp 43–48Google Scholar
  46. 46.
    Kalinin SV, Mirman B, Karapetian E (2007) Relationship between direct and converse piezoelectric effect in a nanoscale electromechanical contact. Phys Rev B 76(21):212102Google Scholar
  47. 47.
    Makagon A, Kachanov M, Kalinin SV, Karapetian E (2007) Indentation of spherical and conical punches into piezoelectric half-space with frictional sliding: applications to scanning probe microscopy. Phys Rev B 76(6):064115Google Scholar
  48. 48.
    Karapetian E, Kalinin SV (2011) Point force and generalized point source on the surface of semi-infinite transversely isotropic material. J Appl Phys 110(5):05220Google Scholar
  49. 49.
    Makagon A, Kachanov M, Karapetian E, Kalinin SV (2009) Piezoelectric indentation of a flat circular punch accompanied by frictional sliding and applications to scanning probe microscopy. Int J Eng Sci 47(2):221–239Google Scholar
  50. 50.
    Karapetian E, Kachanov M, Kalinin SV (2009) Stiffness relations for piezoelectric indentation of flat and non-flat punches of arbitrary planform: applications to probing nanoelectromechanical properties of materials. J Mech Phys Solids 57(4):673–688MathSciNetzbMATHGoogle Scholar
  51. 51.
    Chen WQ, Ding HJ (2004) Potential theory method for 3D crack and contact problems of multi-field coupled media: a survey. J Zhejiang Univ Sci 5:1009–1021Google Scholar
  52. 52.
    Chen WQ (2000) On piezoelastic contact problem for a smooth punch. Int J Solids Struct 37:2331–2340zbMATHGoogle Scholar
  53. 53.
    Chen WQ, Pan EN, Wang HM, Zhang CZ (2010) Theory of indentation on multiferroic composite materials. J Mech Phys Solids 58:1524–1551MathSciNetzbMATHGoogle Scholar
  54. 54.
    Li XY, Wu F, Jin X, Chen WQ (2015) 3D coupled field in a transversely isotropic magneto-electro-elastic half space punched by an elliptic indenter. Mech Phys Solids 75:1–44MathSciNetzbMATHGoogle Scholar
  55. 55.
    Karapetian E, Kalinin SV (2013) Indentation of a punch with chemical or heat distribution at its base into transversely isotropic half-space: application to local thermal and electrochemical probes. J Appl Phys 113:187201Google Scholar
  56. 56.
    Yang J, Jin XY (2014) Indentation of a flat circular punch with uniform heat flux at its base into transversely isotropic magneto-electro-thermo-elastic half space. J Appl Phys 115:083516Google Scholar
  57. 57.
    Berndt EA, Sevostianov I (2016) Action of a smooth flat charged punch on the piezoelectric half-space possessing symmetry of class 6. Int J Eng Sci 103:77–96MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • V. I. Fabrikant
    • 1
    Email author
  • E. Karapetian
    • 2
  • S. V. Kalinin
    • 3
  1. 1.Archambault JailSte-Anne-Des-PlainesCanada
  2. 2.Department of Mathematics & Computer ScienceSuffolk UniversityBostonUSA
  3. 3.The Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations