Skip to main content
Log in

Ice formation on a smooth or rough cold surface due to the impact of a supercooled water droplet

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Ice accretion is considered in the impact of a supercooled water droplet on a smooth or rough solid surface, the roughness accounting for earlier icing. In this theoretical investigation, the emphasis and novelty lie in the full nonlinear interplay of the droplet motion and the growth of the ice surface being addressed for relatively small times, over a realistic range of Reynolds numbers, Froude numbers, Weber numbers, Stefan numbers and capillary under-heating parameters. The Prandtl number and the kinetic under-heating parameter are taken to be order unity. The ice accretion brings inner layers into play forcibly, affecting the outer flow. (The work includes viscous effects in an isothermal impact without phase change, as a special case, and the differences between impacts with and without freezing.) There are four main findings. First, the icing dynamically can accelerate or decelerate the spreading of the droplet whereas roughness on its own tends to decelerate spreading. The interaction between the two and the implications for successive freezings are found to be subtle. Second, a focus on the dominant physical effects reveals a multi-structure within which restricted regions of turbulence are implied. The third main finding is an essentially parabolic shape for a single droplet freezing under certain conditions. Fourth is a connection with a body of experimental and engineering works and with practical findings to the extent that the explicit predictions here for ice-accretion rates are found to agree with the experimental range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Stan CA, Schneider GF, Shevkoplyas SS, Hashimoto M, Ibanescu M, Wiley BJ, Whitesides GM (2009) A microfluidic apparatus for the study of ice nucleation in supercooled water drops. Lab Chip 9:2293–2305

    Article  Google Scholar 

  2. Mason BJ (1976) The physics of clouds. Oxford monographs on meterology, vol 594, 2nd edn. Clarendon Press, Oxford

  3. Gent RW, Dart NP, Cansdale JT (2000) Aircraft Icing. Philos Trans R Soc Ser A 358:2873–2911

    Article  ADS  MATH  Google Scholar 

  4. Lynch FT, Khodadoust A (2001) Effects on ice accretions on aircraft aerodynamics. Prog Aerosp Sci 37:669–767

    Article  Google Scholar 

  5. Hindmarsh JP, Russell AB, Chen XD (2003) Experimental and numerical analysis of the temperature transition of a suspended freezing water droplet. Int J Heat Mass Transf 46:1199–1213

    Article  Google Scholar 

  6. Jung S, Tiwari MK, Doan NV, Poulikakos D (2012) Mechanism of supercooled droplet freezing on surfaces. Nat Commun 3:615–623

    Article  ADS  Google Scholar 

  7. Zheng L, Li Z, Bourdo S, Khedir KR, Asar MP, Ryerson CC, Biris AS (2011) Exceptional superhydrophobicity and low velocity impact icephobicity of acetone-functionalized carbon nanotube films. Langmuir 27:9936–9943

    Article  Google Scholar 

  8. Worthington AM (1876) On the form assumed by drops of liquids falling vertically on a horizontal plate. Proc R Soc Ser A 283:141–173

    Google Scholar 

  9. Edgerton HE, Killian JR (1939) Flash. Charles T. Branford Co, Boston

    Google Scholar 

  10. Rioboo R, Marengo M, Tropea C (2002) Time evolution of a liquid drop impact onto solid, dry surfaces. Exp Fluids 33:112–124

    Article  Google Scholar 

  11. Rioboo R, Tropea C, Marengo M (2001) Outcomes from a drop impact on solid surfaces. At Sprays 33:155–165

    Google Scholar 

  12. S̆ikalo S̆, Tropea C, Ganić EN (2005) Impact of droplets onto inclined surfaces. J Colloid Interface Sci 286:661–669

    Article  Google Scholar 

  13. Rein M (1993) Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn Res 12:61–93

    Article  ADS  Google Scholar 

  14. Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38:159–192

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Engel OG (1955) Water drop collisions with a solid surface. J Res Nat Bur Stand 54:281–298

    Article  Google Scholar 

  16. Jones H (1973) Splat cooling and metastable phases. Rep Prog Phys 36:1425 [see also Jones H (1982) Rapid solidification of metals and alloys, Monograph 8, Institute of Metallurgists, London.]

    Article  ADS  Google Scholar 

  17. Collings EW, Markworth AJ, McCoy JK, Saunders JH (1990) Splat-quench solidification of freely falling liquid-metal drops by impact on a planar substrate. J Mater Sci 23:3677–3682

    Article  ADS  Google Scholar 

  18. Chandra S, Avedisian CT (1991) On the collision of a droplet with a solid surface. Proc R Soc Ser A 432:13

    Article  ADS  Google Scholar 

  19. Pasandideh-Fard M, Qiao YM, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluids 8:650–659

    Article  ADS  Google Scholar 

  20. Roisman IV, Rioboo R, Tropea C (2002) Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc R Soc Ser A 458:1411–1430

    Article  ADS  MATH  Google Scholar 

  21. Roisman IV (2009) Inertia dominated drop collisions. II. An analytic solution of the Navier–Stokes equations for a spreading viscous film. Phys Fluids 21:052104

    Article  ADS  MATH  Google Scholar 

  22. Roisman IV, Berberovic E, Tropea C (2009) Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys Fluids 21:052103

    Article  ADS  MATH  Google Scholar 

  23. Lagubeau G, Fontelos MA, Josserand C, Maurel A, Pagneux V, Petitjeans P (2012) Spreading dynamics of drop impacts. J Fluid Mech 713:50–60

    Article  ADS  MATH  Google Scholar 

  24. Roisman IV (2010) Fast forced liquid film spreading on a substrate: flow, heat transfer and phase transition. J Fluid Mech 656:189–204

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Madjeski J (1976) Solidification of droplets on a cold surface. Int J Heat Mass Transf 19:1009–1013

    Article  ADS  MATH  Google Scholar 

  26. Madjeski J (1983) Droplets on impact with a solid surface. Int J Heat Mass Transf 26:1095–1098

    Article  Google Scholar 

  27. Bennett T, Poulikakos D (1993) Splat-quench solidification: estimating the maximum spreading of a droplet impacting a solid surface. J Mater Sci 28:963–970

    Article  ADS  Google Scholar 

  28. Bennett T, Poulikakos D (1994) Heat transfer aspects of splat-quench solidification: modelling and experiment. J Mater Sci 29:2025–2039

    Article  ADS  Google Scholar 

  29. Evans PV, Greer AL (1988) Modelling of crystal growth and solute redistribution during rapid solidification. J Mater Sci Eng 98:357

    Article  Google Scholar 

  30. Cebeci T (1989) Calculation of flow over iced airfoils. AIAA J 27:853–861

    Article  ADS  Google Scholar 

  31. Fortin G, Laforte JL, Ilinca A (2006) Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model. Int J Therm Sci 45:595–606

    Article  Google Scholar 

  32. Collyer MR (1976) A user guide to a program for computing viscous transonic flows past aerfoils. RAE Tech Memo Aero 1693, September 1976

  33. Messinger BL (1953) Equilibrium temperature of an unheated icing surface as a function of air speed. J Aeronaut Sci 20(1):29–43

  34. Wright WB, Bidwell CS (1995) Additional improvements to the NASA Lewis Ice Accretion Code LEWICE, NASA TM-106849, AIAA-95-0752

  35. Brakel TW, Charpin JPF, Myers TG (2007) One-dimensional ice growth due to incoming supercooled droplets impacting on a thin conducting substrate. Int J Heat Mass Transf 50:1694–1705

    Article  MATH  Google Scholar 

  36. Myers TG, Charpin JPF, Chapman SJ (2002) The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface. Phys Fluids 14:2788–2803

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Myers TG, Charpin JPF, Thompson CP (2002) Slowly accreting ice due to supercooled water impacting on a cold surface. Phys Fluids 14:240–256

    Article  ADS  MATH  Google Scholar 

  38. Myers TG, Charpin JPF (2004) A mathematical model for atmospheric ice accretion and water flow on a cold surface. Int J Heat Mass Transf 47:5483–5500

    Article  MATH  Google Scholar 

  39. Myers TG, Hammond DW (1999) Ice and water film growth from incoming supercooled droplets. Int. J Heat Mass Transf 42:2233–2242

    Article  MATH  Google Scholar 

  40. Tsao JC, Rothmayer AP (2002) Application of triple-deck theory to the prediction of glaze ice roughness formation on an airfoil leading edge. Comput Fluids 31:977–1014

    Article  MATH  Google Scholar 

  41. Quero M, Hammond DW, Purvis R, Smith FT (2006) Analysis of supercooled water impact on a thin water layer and ice growth. AIAA Paper 466:5536–5548

    Google Scholar 

  42. Wagner H (1932) Uber stoss-und gleitvorgänge an der oberfläche von flüsigkeiten (Phenomena associated with impacts and sliding on liquid surfaces). Z Angew Math Mech 12:193–215

    Article  MATH  Google Scholar 

  43. Bowden FP, Field JE (1964) The brittle fracture of solids by liquid impact, by solid impact, and by shock. Proc R Soc Ser A 260:94–95

    ADS  Google Scholar 

  44. Lesser MB, Field JE (1983) The impact of compressible liquids. Annu Rev Fluid Mech 15:97–122

    Article  ADS  Google Scholar 

  45. Mandre S, Brenner MP (2012) The mechanism of a splash on a dry solid surface. J Fluid Mech 690:148–172

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Howison SD, Ockendon JR, Oliver JM (2002) Deep- and shallow-water slamming at small and zero deadrise angles. J Eng Math 42:373–388

    Article  MathSciNet  MATH  Google Scholar 

  47. Howison SD, Ockendon JR, Wilson SK (1991) Incompressible water-entry problems at small deadrise angles. J Fluid Mech 222:215–230

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Oliver JM (2002) Water entry and related problems. D. Phil. Thesis, University of Oxford

  49. Korobkin AA (1996) Advances in marine hydrodynamics. In: Ohkusu M (ed) Water impact problems in ship hydrodynamics (chap 7). Computational Mechanics Publications, Southampton, pp 323–339

  50. Korobkin AA (1997) Asymptotic theory of liquid–solid impact. Philos Trans R Soc Ser A 355:507–522

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Korobkin AA (1999) Shallow water impact problems. J Eng Math 35:233–250

    Article  MathSciNet  MATH  Google Scholar 

  52. Howison SD, Ockendon JR, Oliver JM, Purvis R, Smith FT (2005) Droplet impact on a thin fluid layer. J Fluid Mech 542:1–23

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Korobkin AA, Ellis AS, Smith FT (2008) Trapping of air in impact between a body and shallow water. J Fluid Mech 611:365–394

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Purvis R, Smith FT (2004) Air–water interactions near droplet impact. Eur J Appl Math 15:853–871

    Article  MathSciNet  MATH  Google Scholar 

  55. Purvis R, Smith FT (2005) Droplet impact water layers: post-impact analysis and computations. Philos Trans R Soc Ser A 611:1209–1221

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Ellis AS, Smith FT, White AH (2011) Droplet impact on to a rough surface. Q J Mech Appl Math 64:1–37

    Article  MathSciNet  MATH  Google Scholar 

  57. Hicks PD, Smith FT (2011) Skimming impacts and rebounds on shallow liquid layers. Proc R Soc Ser A 467:653–674

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, Oxford

    MATH  Google Scholar 

  59. Crank J (1984) Free and moving boundary problems. Oxford University Press, Oxford

    MATH  Google Scholar 

  60. Worster MG (2000) Interfacial fluid dynamics. In: Batchelor GK, Moffat HK, Worster MG (eds) Perspectives in fluid dynamics (chap 8). Cambridge University Press, Cambridge

  61. Löwen H, Bechhoefer J, Tuckerman LS (1992) Crystal growth at long times: critical behaviour at the crossover from diffusion to kinetics-limited regimes. Phys Rev A 45:2399–2415

    Article  ADS  Google Scholar 

  62. Howison SD, Ockendon JR, Lacey AA (1985) Singularity development in moving boundary problems. Q J Mech Appl Math 14:343–360

    Article  MathSciNet  MATH  Google Scholar 

  63. Dewynne JN, Howison SD, Ockendon JR, Xie W (1989) Asymptotic behaviour of solutions to the Stefan problem with a kinetic condition at a free boundary. J Austral Math Soc B 31:81–96

    Article  MATH  Google Scholar 

  64. Umantsev A, Davis SH (1992) Growth from a hypercooled melt near absolute stability. Phys Rev A 45:7195–7201

    Article  ADS  Google Scholar 

  65. Charach Ch, Zaltzman B (1993) Planar solidification from an undercooled melt: asymptotic solutions to a continuum model with interfacial kinetics. Phys Rev A 47:1230–1234

    ADS  Google Scholar 

  66. Charach Ch, Zaltzman B (1994) Analytic model for planar growth of a solid germ from an undercooled melt. Phys Rev E 49:4322–4327

    Article  ADS  Google Scholar 

  67. Evans JD, King JR (2000) Asymptotic results for the Stefan problem with kinetic undercooling. Q J Mech Appl Math 53:449–473

    Article  MathSciNet  MATH  Google Scholar 

  68. Evans JD, King JR (2003) The Stefan problem with nonlinear kinetic undercooling. Q J Mech Appl Math 56:139–161

    Article  MathSciNet  MATH  Google Scholar 

  69. AGARD (1997) Ice accretion simulation. Report of the fluid dynamics working group 20. AGARD Advisory Report, AGARD-AR-344, ISBN 92-836-1067-9

  70. Davis SH (2000) Interfacial fluid dynamics. In: Batchelor GK, Moffat HK, Worster MG (eds) Perspectives in fluid dynamics (chap 1). Cambridge University Press, Cambridge

  71. Klemp JB, Acrivos A (1976) A moving-wall boundary layer with reverse flow. J Fluid Mech 70:363–381

    Article  ADS  MATH  Google Scholar 

  72. Weidman PD, Kubitschek DG, Davis AMJ (2006) The effect of transpiration on self-similar boundary-layer flow over moving surfaces. Int J Eng Sci 44:730–737

    Article  MATH  Google Scholar 

  73. Sychev VV (1980) On certain singularities in solutions of equations of boundary layer on a moving surface. P M M Soc USSR 44:587

    MathSciNet  MATH  Google Scholar 

  74. Elliott JW, Cowley SJ, Smith FT (1983) Breakdown of boundary layers; (i) on moving surfaces; (ii) in semi-similar unsteady flow; (iii) in fully unsteady flow. Geophys Astrophys Fluid Dyn 25:77–138

    Article  ADS  Google Scholar 

  75. Degani AT, Walker JD, Smith FT (1998) Unsteady separation past moving surfaces. J Fluid Mech 375:1–38

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Smith FT, Elliott JW (1985) On the abrupt turbulent reattachment downstream of leading-edge laminar separation. Proc R Soc Ser A 401:1–27

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Braun S, Kluwick A (2005) Blow-up and control of marginally separated boundary layers. Philos Trans R Soc Ser A 363:1057–1067

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Bowles RI, Davies C, Smith FT (2003) On the spiking stages in deep transition and unsteady separation. J Eng Math 45:227–245

    Article  MathSciNet  MATH  Google Scholar 

  79. Scheichl B, Kluwick A, Smith FT (2011) Break-away separation for high turbulence intensity and large Reynolds number. J Fluid Mech 670:260–300

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Wagner B, Hammond D, van Hengst J, Gent R, Kind R (1997) Introduction. In: Ice accretion simulation. Report of the fluid dynamics working group 20. AGARD Advisory Report AGARD-AR-344. ISBN 92-836-1067-9

  81. van Hengst J, Gent R, Hammond D, Wagner B (1997) Ice accretion and its effects on aircraft. In: Ice accretion simulation. Report of the fluid dynamics working group 20. AGARD Advisory Report AGARD-AR-344, ISBN 92-836-1067-9

  82. King R, Feo A, Golia C, Shah A (1997) Experimental techniques and facilities. In: Ice accretion simulation. Report of the fluid dynamics working group 20. AGARD Advisory Report AGARD-AR-344, ISBN 92-836-1067-9

  83. Potapczuk MG, Gent R, Gifford D (1997) Review, validation and extension of ice accretion prediction codes. In: Ice accretion simulation. Report of the fluid dynamics working group 20. AGARD Advisory Report AGARD-AR-344, ISBN 92-836-1067-9

  84. Shin J (1994) Characteristics of surface roughness associated with leading edge ice accretion. AIAA-94-0799 [See also Shin J (1996) J Aircraft 33:316–321]

Download references

Acknowledgments

Thanks are due to the UK Icing Group, especially Roger Gent and David Hammond, for their insights, and to the referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Elliott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, J.W., Smith, F.T. Ice formation on a smooth or rough cold surface due to the impact of a supercooled water droplet. J Eng Math 102, 35–64 (2017). https://doi.org/10.1007/s10665-015-9784-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-015-9784-z

Keywords

Navigation