Skip to main content
Log in

Numerical analysis of the external slow flows of a viscous fluid using the R-function method

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

In this paper the problem of calculating the external slow flow of viscous incompressible fluid past bodies of revolution is considered. A numerical method, based on the joint use of the R-function structural method of V. L. Rvachev for building the structure of the boundary-value problem solution and the Galerkin projection method for approximating the indeterminate components of the structure, is proposed for solving the problem. The problem of slow viscous incompressible fluid flow past an ellipsoid of revolution is numerically solved using the proposed approach to test the developed method. The solution obtained is compared with the known exact solution of the problem in question. In addition, the problems of flow past two touching spheres and past two joined ellipsoids are solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lamb H (1992) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge

    Google Scholar 

  2. Landau LD, Lifshitz EM (1987) Course of theoretical physics. Fluid mechanics, 2nd edn. Butterworth–Heinemann, London

    Google Scholar 

  3. Loitsyansky LG (2003) Mechanics of liquids and gases. Begell House, New York

    Google Scholar 

  4. Kutepov AM, Polyanin AD, Zapryanov ZD, Vyazmin AV, Kazenin DA (1996) Chemical hydrodynamics (handbook). Quantum, Moscow

    Google Scholar 

  5. Happel J, Brenner H (1973) Low Reynolds number hydrodynamics. Martinus Nijhoff, The Hague

    Google Scholar 

  6. Stokes GG (1851) On the effect of internal friction of fluids on pendulums. Trans Camb Philos Soc 9:8–106

    ADS  Google Scholar 

  7. Oberbeck A (1876) Uber stationare flussigkeitsbewegungen mit beruksichtigung der inneren. Reibung J Reine Angew Math 81:62–80

    Google Scholar 

  8. Jeffery GB (1922) The motion of ellipsoidal particles in a viscous fluid. Proc R Soc A 102:161–179

    Article  ADS  Google Scholar 

  9. Aoi T (1955) The steady flow of viscous fluid past a fixed spheroidal obstacle at small Reynolds numbers. J Phys Soc Jpn 10(2):119–129

    Article  ADS  MathSciNet  Google Scholar 

  10. Breach DR (1961) Slow flow past ellipsoids of revolution. J Fluid Mech 10:306–314

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Acrivos A, Taylor TD (1964) The Stokes flow past an arbitrary particle: the slightly deformed sphere. Chem Eng Sci 19(7):445–451

    Article  Google Scholar 

  12. Chester W, Breach DR, Proudman I (1969) On the flow past a sphere at low Reynolds number. J Fluid Mech 37(4):751–760

  13. Oliver DLR, Chung JN (1985) Steady flows inside and around a fluid sphere at low Reynolds numbers. J Fluid Mech 154:215–230

    Article  ADS  MATH  Google Scholar 

  14. Sano T (1981) Unsteady flow past a sphere at low Reynolds number. J Fluid Mech 112:433–441

    Article  ADS  MATH  Google Scholar 

  15. Kim S, Arunachalam PV (1987) The general solution for an ellipsoid in low-Reynolds-number flow. J Fluid Mech 178:535–547

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Batchelor K (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  17. Oseen CW (1927) Hydrodynamik. Akademische Verlagsgesellschaft, Leipzig

    MATH  Google Scholar 

  18. Faxen H (1927) Exakte Losungen der Oseenschen Dgl. einer zahen Flussigkeit fur den Fall der Translationsbewegung eines Zylinders. Nova Acta Soc Sci Upsal 4:1–55

    Google Scholar 

  19. Tomotika S, Aoi T (1950) The steady flow of a viscous fluid past a sphere and circular cylinder at small Reynolds numbers. Q J Mech Appl Math 3:140–161

    Article  MATH  MathSciNet  Google Scholar 

  20. Kaplun S (1957) Low Reynolds number flow past a circular cylinder. J Math Mech 6:595–603

    MATH  MathSciNet  Google Scholar 

  21. Proudman T, Pearson JRA (1957) Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J Fluid Mech 2:237–262

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Kaplun S, Lagerstrom PA (1957) Asymptotic expansions of Navier–Stokes solutions for small Reynolds numbers. J Math Mech 6:585–593

    MATH  MathSciNet  Google Scholar 

  23. Ladyzhenskaya OA (1963) The mathematical theory of viscous incompressible flow. Gordon and Breach, New York

    MATH  Google Scholar 

  24. Anderson D, Tannehil J, Pletcher R (1984) Computational fluid mechanics and heat transfer. McGraw Hill, New York

    MATH  Google Scholar 

  25. Gushchin VA, Matyushin PV (2006) Mathematical modelling of the 3D incompressible fluid flows. Matem Mod 18(5):5–20

    MATH  Google Scholar 

  26. Prikhodko AA, Redchyts DA (1996) Numerical simulation of nonstacionary flow in awake behind cylinder on the basis of Navier–Stokes equations. Matem Mod 8(10):100–112

    Google Scholar 

  27. Ryaben’kii VS, Torgashov VA (2005) The noniteration technique for solving implicit difference scheme of Navier–Stokes equations in terms of vorticity and stream function. Appl Hydromech 7(79):56–71

    Google Scholar 

  28. Roache PJ (1976) Computational fluid dynamics. Hermosa Publishers, Albuquerque

    Google Scholar 

  29. Fletcher CAJ (1991) Computational techniques for fluid dynamics, vol 2. Springer, New York

    MATH  Google Scholar 

  30. Chung TJ (2002) Computational fluid dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  31. Liu J-G, Wienan E (2003) Simple finite element method in vorticity formulation for incompressible flow. Math Comput 10(2):1130–1145

    Google Scholar 

  32. Pozrikidis C (2001) Fluid dynamics: theory, computation, and numerical simulation. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  33. Rvachev VL (1982) Theory of R-functions and its some applications. Nauk. Dumka, Kiev

    MATH  Google Scholar 

  34. Rvachev VL, Sheiko TI (1995) R-functions in boundary value problems in mechanics. Appl Mech Rev 48(4):151–188

    Article  ADS  Google Scholar 

  35. Kravchenko VF, Rvachev VL (2006) The algebra of logic, atomic functions and wavelets. Fizmatlit, Moscow

    Google Scholar 

  36. Shapiro V (2007) Semi-analytic geometry with R-functions. Acta Numer 16:239–303

    Article  MATH  MathSciNet  Google Scholar 

  37. Kolosova SV (1972) The use of projection methods and R-functions method to the solution of boundary value problems in infinite domains. PhD thesis, Kharkiv National University of Radioelectronics, Kharkiv

  38. Kolosova SV, Sidorov MV (2003) Application of R-functions method to the calculation of plane viscous liquid flows. Vestn KhNU Ser Prykl Math Mech 602:61–67

    MATH  Google Scholar 

  39. Suvorova IG (2004) Computer modeling of axisymmetric flows in the channels of complex shape. Vestn NTU KhPI 31:141–148

    Google Scholar 

  40. Tevjashev AD, Gibkina NV, Sidorov MV (2007) On one approach to the mathematical modeling of plane steady flows of viscous incompressible fluid in simply connected domains. Radioelectron Inform 2:50–57

    Google Scholar 

  41. Suvorova IG, Kravchenko OV, Baranov IA (2011) Mathematical and computer modeling of axisymmetric flows of incompressible viscous fluid with the use of R-function method. Math Method ta Phys-Mech Polya 54(2):139–149

  42. Maksimenko-Shejko KV (2005) Mathematical modeling of heat transfer at motion of fluid through the channels with the screw type symmetry of the R-functions method. Dop NAN Ukr 9:41–46

    Google Scholar 

  43. Strel’chenko AJ, Kolosova SV, Rvachev VL (1972) A method for solving boundary value problems. Dop AN URSR Ser A 9:837–839

    Google Scholar 

  44. Krasnoselskiy MA, Vainikko GM, Zabreiko PP, Rutitskii YB, Stecenko VY (1969) Approximate solution of operator equations. Nauka, Moscow

    Google Scholar 

  45. Mikhlin SG (1964) Variational methods in mathematical physics. Pergamon Press, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Lamtyugova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamtyugova, S.N., Sidorov, M.V. Numerical analysis of the external slow flows of a viscous fluid using the R-function method. J Eng Math 91, 59–79 (2015). https://doi.org/10.1007/s10665-014-9746-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-014-9746-x

Keywords

Navigation