Journal of Engineering Mathematics

, Volume 91, Issue 1, pp 59–79 | Cite as

Numerical analysis of the external slow flows of a viscous fluid using the R-function method

  • S. N. LamtyugovaEmail author
  • M. V. Sidorov


In this paper the problem of calculating the external slow flow of viscous incompressible fluid past bodies of revolution is considered. A numerical method, based on the joint use of the R-function structural method of V. L. Rvachev for building the structure of the boundary-value problem solution and the Galerkin projection method for approximating the indeterminate components of the structure, is proposed for solving the problem. The problem of slow viscous incompressible fluid flow past an ellipsoid of revolution is numerically solved using the proposed approach to test the developed method. The solution obtained is compared with the known exact solution of the problem in question. In addition, the problems of flow past two touching spheres and past two joined ellipsoids are solved.


Stokes flow The Galerkin method The R-functions method Viscous incompressible fluid 


  1. 1.
    Lamb H (1992) Hydrodynamics, 6th edn. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Landau LD, Lifshitz EM (1987) Course of theoretical physics. Fluid mechanics, 2nd edn. Butterworth–Heinemann, LondonGoogle Scholar
  3. 3.
    Loitsyansky LG (2003) Mechanics of liquids and gases. Begell House, New YorkGoogle Scholar
  4. 4.
    Kutepov AM, Polyanin AD, Zapryanov ZD, Vyazmin AV, Kazenin DA (1996) Chemical hydrodynamics (handbook). Quantum, MoscowGoogle Scholar
  5. 5.
    Happel J, Brenner H (1973) Low Reynolds number hydrodynamics. Martinus Nijhoff, The HagueGoogle Scholar
  6. 6.
    Stokes GG (1851) On the effect of internal friction of fluids on pendulums. Trans Camb Philos Soc 9:8–106ADSGoogle Scholar
  7. 7.
    Oberbeck A (1876) Uber stationare flussigkeitsbewegungen mit beruksichtigung der inneren. Reibung J Reine Angew Math 81:62–80Google Scholar
  8. 8.
    Jeffery GB (1922) The motion of ellipsoidal particles in a viscous fluid. Proc R Soc A 102:161–179CrossRefADSGoogle Scholar
  9. 9.
    Aoi T (1955) The steady flow of viscous fluid past a fixed spheroidal obstacle at small Reynolds numbers. J Phys Soc Jpn 10(2):119–129CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Breach DR (1961) Slow flow past ellipsoids of revolution. J Fluid Mech 10:306–314CrossRefADSzbMATHMathSciNetGoogle Scholar
  11. 11.
    Acrivos A, Taylor TD (1964) The Stokes flow past an arbitrary particle: the slightly deformed sphere. Chem Eng Sci 19(7):445–451CrossRefGoogle Scholar
  12. 12.
    Chester W, Breach DR, Proudman I (1969) On the flow past a sphere at low Reynolds number. J Fluid Mech 37(4):751–760Google Scholar
  13. 13.
    Oliver DLR, Chung JN (1985) Steady flows inside and around a fluid sphere at low Reynolds numbers. J Fluid Mech 154:215–230CrossRefADSzbMATHGoogle Scholar
  14. 14.
    Sano T (1981) Unsteady flow past a sphere at low Reynolds number. J Fluid Mech 112:433–441CrossRefADSzbMATHGoogle Scholar
  15. 15.
    Kim S, Arunachalam PV (1987) The general solution for an ellipsoid in low-Reynolds-number flow. J Fluid Mech 178:535–547CrossRefADSzbMATHMathSciNetGoogle Scholar
  16. 16.
    Batchelor K (1967) An introduction to fluid dynamics. Cambridge University Press, CambridgezbMATHGoogle Scholar
  17. 17.
    Oseen CW (1927) Hydrodynamik. Akademische Verlagsgesellschaft, LeipzigzbMATHGoogle Scholar
  18. 18.
    Faxen H (1927) Exakte Losungen der Oseenschen Dgl. einer zahen Flussigkeit fur den Fall der Translationsbewegung eines Zylinders. Nova Acta Soc Sci Upsal 4:1–55Google Scholar
  19. 19.
    Tomotika S, Aoi T (1950) The steady flow of a viscous fluid past a sphere and circular cylinder at small Reynolds numbers. Q J Mech Appl Math 3:140–161CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Kaplun S (1957) Low Reynolds number flow past a circular cylinder. J Math Mech 6:595–603zbMATHMathSciNetGoogle Scholar
  21. 21.
    Proudman T, Pearson JRA (1957) Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J Fluid Mech 2:237–262CrossRefADSzbMATHMathSciNetGoogle Scholar
  22. 22.
    Kaplun S, Lagerstrom PA (1957) Asymptotic expansions of Navier–Stokes solutions for small Reynolds numbers. J Math Mech 6:585–593zbMATHMathSciNetGoogle Scholar
  23. 23.
    Ladyzhenskaya OA (1963) The mathematical theory of viscous incompressible flow. Gordon and Breach, New YorkzbMATHGoogle Scholar
  24. 24.
    Anderson D, Tannehil J, Pletcher R (1984) Computational fluid mechanics and heat transfer. McGraw Hill, New YorkzbMATHGoogle Scholar
  25. 25.
    Gushchin VA, Matyushin PV (2006) Mathematical modelling of the 3D incompressible fluid flows. Matem Mod 18(5):5–20zbMATHGoogle Scholar
  26. 26.
    Prikhodko AA, Redchyts DA (1996) Numerical simulation of nonstacionary flow in awake behind cylinder on the basis of Navier–Stokes equations. Matem Mod 8(10):100–112Google Scholar
  27. 27.
    Ryaben’kii VS, Torgashov VA (2005) The noniteration technique for solving implicit difference scheme of Navier–Stokes equations in terms of vorticity and stream function. Appl Hydromech 7(79):56–71Google Scholar
  28. 28.
    Roache PJ (1976) Computational fluid dynamics. Hermosa Publishers, AlbuquerqueGoogle Scholar
  29. 29.
    Fletcher CAJ (1991) Computational techniques for fluid dynamics, vol 2. Springer, New YorkzbMATHGoogle Scholar
  30. 30.
    Chung TJ (2002) Computational fluid dynamics. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  31. 31.
    Liu J-G, Wienan E (2003) Simple finite element method in vorticity formulation for incompressible flow. Math Comput 10(2):1130–1145Google Scholar
  32. 32.
    Pozrikidis C (2001) Fluid dynamics: theory, computation, and numerical simulation. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  33. 33.
    Rvachev VL (1982) Theory of R-functions and its some applications. Nauk. Dumka, KievzbMATHGoogle Scholar
  34. 34.
    Rvachev VL, Sheiko TI (1995) R-functions in boundary value problems in mechanics. Appl Mech Rev 48(4):151–188CrossRefADSGoogle Scholar
  35. 35.
    Kravchenko VF, Rvachev VL (2006) The algebra of logic, atomic functions and wavelets. Fizmatlit, MoscowGoogle Scholar
  36. 36.
    Shapiro V (2007) Semi-analytic geometry with R-functions. Acta Numer 16:239–303CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Kolosova SV (1972) The use of projection methods and R-functions method to the solution of boundary value problems in infinite domains. PhD thesis, Kharkiv National University of Radioelectronics, KharkivGoogle Scholar
  38. 38.
    Kolosova SV, Sidorov MV (2003) Application of R-functions method to the calculation of plane viscous liquid flows. Vestn KhNU Ser Prykl Math Mech 602:61–67zbMATHGoogle Scholar
  39. 39.
    Suvorova IG (2004) Computer modeling of axisymmetric flows in the channels of complex shape. Vestn NTU KhPI 31:141–148Google Scholar
  40. 40.
    Tevjashev AD, Gibkina NV, Sidorov MV (2007) On one approach to the mathematical modeling of plane steady flows of viscous incompressible fluid in simply connected domains. Radioelectron Inform 2:50–57Google Scholar
  41. 41.
    Suvorova IG, Kravchenko OV, Baranov IA (2011) Mathematical and computer modeling of axisymmetric flows of incompressible viscous fluid with the use of R-function method. Math Method ta Phys-Mech Polya 54(2):139–149Google Scholar
  42. 42.
    Maksimenko-Shejko KV (2005) Mathematical modeling of heat transfer at motion of fluid through the channels with the screw type symmetry of the R-functions method. Dop NAN Ukr 9:41–46Google Scholar
  43. 43.
    Strel’chenko AJ, Kolosova SV, Rvachev VL (1972) A method for solving boundary value problems. Dop AN URSR Ser A 9:837–839Google Scholar
  44. 44.
    Krasnoselskiy MA, Vainikko GM, Zabreiko PP, Rutitskii YB, Stecenko VY (1969) Approximate solution of operator equations. Nauka, MoscowGoogle Scholar
  45. 45.
    Mikhlin SG (1964) Variational methods in mathematical physics. Pergamon Press, OxfordzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Applied MathematicsKharkiv National University of RadioelectronicsKharkivUkraine
  2. 2.Department of Advanced MathematicsO. M. Beketov National University of Urban Economy in KharkivKharkivUkraine

Personalised recommendations