Journal of Engineering Mathematics

, Volume 94, Issue 1, pp 63–79 | Cite as

Surfactant spreading on a thin liquid film: reconciling models and experiments

  • Ellen R. Swanson
  • Stephen L. Strickland
  • Michael Shearer
  • Karen E. Daniels
Article

Abstract

The spreading dynamics of surfactant molecules on a thin fluid layer is of both fundamental and practical interest. A mathematical model formulated by Gaver and Grotberg [J Fluid Mech 235:399–414, 1992] describing the spreading of a single layer of insoluble surfactant has become widely accepted, and several experiments on axisymmetric spreading have confirmed its predictions for both the height profile of the free surface and the spreading exponent (the radius of the circular area covered by surfactant grows as \(t^{1/4}\)). However, these prior experiments utilized primarily surfactant quantities exceeding (sometimes far exceeding) a monolayer. In this paper, we report that this regime is characterized by a mismatch between the timescales of the experiment and model and, additionally, find that the spatial distribution of surfactant molecules differs substantially from the model prediction. For experiments performed in the monolayer regime for which the model was developed, the surfactant layer is observed to have a spreading exponent of less than \(1/10\), far below the predicted value, and the surfactant distribution is also in disagreement. These findings suggest that the model is inadequate for describing the spreading of insoluble surfactants on thin fluid layers.

Keywords

Experiment Model Surfactant Thin liquid film  

References

  1. 1.
    Bull JL, Nelson LK, Walsh JT, Glucksberg MR, Schurch S, Grotberg JB (1999) Surfactant-spreading and surface-compression disturbance on a thin viscous film. J Biomech Eng-T ASME 121:89–98CrossRefGoogle Scholar
  2. 2.
    Dussaud AD, Matar OK, Troian SM (2005) Spreading characteristics of an insoluble surfactant film on a thin liquid layer: comparison between theory and experiment. J Fluid Mech 544:23–51MATHCrossRefADSGoogle Scholar
  3. 3.
    Fallest DW, Lichtenberger AM, Fox C, Daniels KE (2010) Fluorescent visualization of a spreading surfactant. New J Phys 12:73029CrossRefGoogle Scholar
  4. 4.
    Gaver DP, Grotberg JB (1990) The dynamics of a localized surfactant on a thin-film. J Fluid Mech 213:127–148MATHCrossRefADSGoogle Scholar
  5. 5.
    Jensen OE (1994) Self-similar, surfactant-driven flows. Phys Fluids 6(3):1084–1094MATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Jensen OE, Grotberg JB (1992) Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture. J Fluid Mech 240:259–288MATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Grotberg JB (2011) Respiratory fluid mechanics. Phys Fluids 23(2):021301CrossRefADSGoogle Scholar
  8. 8.
    Braun R (2012) Dynamics of the tear film. Annu Rev Fluid Mech 44:267–297CrossRefADSGoogle Scholar
  9. 9.
    Jensen OE, Halpern D, Grotberg JB (1994) Transport of a passive solute by surfactant-driven flows. Chem Eng Sci 49(8):1107–1117CrossRefGoogle Scholar
  10. 10.
    Evans PL, Schwartz LW, Roy RV (2000) A mathematical model for crater defect formation in a drying paint layer. J Colloid Interface Sci 227(1):191–205CrossRefGoogle Scholar
  11. 11.
    Gundabala VR, Lei C, Ouzineb K, Dupont O, Keddie JL, Routh AF (2008) Lateral surface nonuniformities in drying latex films. Aiche J 54(12):3092–3105Google Scholar
  12. 12.
    Gundabala VR, Routh AF (2006) Thinning of drying latex films due to surfactant. J Colloid Interface Sci 303(1):306–314CrossRefGoogle Scholar
  13. 13.
    Hanyak M, Darhuber AA, Ren M (2011) Surfactant-induced delay of leveling of inkjet-printed patterns. J Appl Phys 109(7):074905CrossRefADSGoogle Scholar
  14. 14.
    Hanyak M, Sinz DKN, Darhuber AA (2012) Soluble surfactant spreading on spatially confined thin liquid films. Soft Matter 8(29):7660CrossRefADSGoogle Scholar
  15. 15.
    Sinz DKN, Hanyak M, Zeegers JCH, Darhuber A (2011) Insoluble surfactant spreading along thin liquid films confined by chemical surface patterns. Phys Chem Chem Phys 13(20):9768–9777CrossRefGoogle Scholar
  16. 16.
    Peterson ER, Shearer M (2011) Radial spreading of surfactant on a thin liquid film. Appl Math Res Express 2011(1):1–22Google Scholar
  17. 17.
    Ahmad J, Hansen R (1972) A simple quantitative treatment of the spreading of monolayers on thin liquid films. J Colloid Interface Sci 38(3):601–604CrossRefGoogle Scholar
  18. 18.
    Gaver DP, Grotberg JB (1992) Droplet spreading on a thin viscous film. J Fluid Mech 235:399–414CrossRefADSGoogle Scholar
  19. 19.
    Segur JB, Oberstar HE (1951) Viscosity of glycerol and its aqueous solutions. Ind Eng Chem 43(9):2117–2120CrossRefGoogle Scholar
  20. 20.
    Sakata EK, Berg JC (1969) Surface diffusion in monolayers. Ind Eng Chem Fund 8:570–575CrossRefGoogle Scholar
  21. 21.
    Wulf M, Michel S, Grundke K, del Rio OI, Kwok DY, Neumann AW (1999) Simultaneous determination of surface tension and density of polymer melts using axisymmetric drop shape analysis. J Colloid Interface Sci 210(1):172–181CrossRefGoogle Scholar
  22. 22.
    Edmonstone BD, Matar OK, Craster RV (2006) A note on the coating of an inclined plane in the presence of soluble surfactant. J Colloid Interface Sci 293:222–229Google Scholar
  23. 23.
    Halpern D, Grotberg JB (1992) Transport of a localized soluble surfactant on a thin film. J Fluid Mech 237:1–11MATHCrossRefADSGoogle Scholar
  24. 24.
    Jensen OE, Grotberg JB (1993) The spreading of heat or soluble surfactant along a thin liquid film. Phys Fluids A-Fluids 5:58–68Google Scholar
  25. 25.
    Edmonstone BD, Matar OK, Craster RV (2004) Flow of surfactant-laden thin films down an inclined plane. J Eng Math 50(2–3):141–156Google Scholar
  26. 26.
    Levy R, Shearer M, Witelski TP (2007) Gravity-driven thin liquid films with insoluble surfactant: smooth traveling waves. Eur J Appl Math 18:679–708MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Matar OK, Troian SM (1999) Spreading of a surfactant monolayer on a thin liquid film: onset and evolution of digitated structures. Chaos 9(1):141–153CrossRefADSGoogle Scholar
  28. 28.
    Warner MRE, Craster RV, Matar OK (2004) Fingering phenomena created by a soluble surfactant deposition on a thin liquid film. Phys Fluids 16(8):2933–2951CrossRefADSGoogle Scholar
  29. 29.
    Borgas MS, Grotberg JB (1988) Monolayer flow in an thin film. J Fluid Mech 193:151–170MATHCrossRefADSGoogle Scholar
  30. 30.
    Sheludko A (1966) Colloid chemistry. Elsevier, AmsterdamGoogle Scholar
  31. 31.
    Foda M, Cox RG (1980) The spreading of thin liquid films on a water-air interface. J Fluid Mech 101:33–57MATHCrossRefADSGoogle Scholar
  32. 32.
    Miner CS, Dalton NN (1953) Glycerol. American chemical society monograph series. Reinhold Publishing Corp, New YorkGoogle Scholar
  33. 33.
    Strickland SL, Hin M, Sayanagi MR, Gaebler C, Daniels KE, Levy R (2014) Self-healing dynamics of surfactant coatings on thin viscous films. Phys Fluids 26(4):042109Google Scholar
  34. 34.
    Shrive JDA, Brennan JD, Brown RS, Krull UJ (1995) Optimization of self-quenching response of nitrobenzoxadiazole dipalmitoylphosphatidylethanolamine in phospholipid membranes for biosensor development. Appl Spectrosc 49(3):304–313CrossRefADSGoogle Scholar
  35. 35.
    Vogel MJ, Hirsa AH (2002) Concentration measurements downstream of an insoluble monolayer front. J Fluid Mech 472:283–305MATHCrossRefADSGoogle Scholar
  36. 36.
    Peterson ER, Shearer M (2012) Simulation of spreading surfactant on a thin liquid film. Appl Math Comput 218(9):5157–5167MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Tanner LH (1979) The spreading of silicone oil drops on horizontal surfaces. J Phys D Appl Phys 12:1473–1484CrossRefADSGoogle Scholar
  38. 38.
    Henderson DM (1998) Effects of surfactants on Faraday-wave dynamics. J Fluid Mech 365:89–107Google Scholar
  39. 39.
    Thiele U, Archer AJ (2012) Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants on high concentration. Am Inst Phys 24(10):102107Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ellen R. Swanson
    • 1
  • Stephen L. Strickland
    • 2
  • Michael Shearer
    • 3
  • Karen E. Daniels
    • 2
  1. 1.Department of MathematicsCentre CollegeDanvilleUSA
  2. 2.Department of PhysicsNorth Carolina State UniversityRaleighUSA
  3. 3.Department of MathematicsNorth Carolina State UniversityRaleighUSA

Personalised recommendations