Skip to main content
Log in

Optimal shape parameter for the solution of elastostatic problems with the RBF method

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Radial basis functions (RBFs) have become a popular method for the solution of partial differential equations. In this paper we analyze the applicability of both the global and the local versions of the method for elastostatic problems. We use multiquadrics as RBFs and describe how to select an optimal value of the shape parameter to minimize approximation errors. The selection of the optimal shape parameter is based on analytical approximations to the local error using either the same shape parameter at all nodes or a node-dependent shape parameter. We show through several examples using both equispaced and nonequispaced nodes that significant gains in accuracy result from a proper selection of the shape parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Fasshauer GE (2007) Meshfree approximation methods with MATLAB. World Scientific, Singapore

    MATH  Google Scholar 

  2. Kansa EJ (1990) Multiquadrics, a scattered data approximation scheme with applications to computational fluid dynamics I. Surface approximations and partial derivatives estimates. Comput Math Appl 19:127–145

    Article  MATH  MathSciNet  Google Scholar 

  3. Kansa EJ (1990) Multiquadrics, a scattered data approximation scheme with applications to computational fluid dynamics II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19:147–161

    Article  MATH  MathSciNet  Google Scholar 

  4. Shu C, Ding H, Yeo KS (2003) Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 192:941–954

    Article  ADS  MATH  Google Scholar 

  5. Tolstykh AI, Shirobokov AI (2003) On using radial basis functions in a “finite difference mode” with applications to elasticity problems. Comput Mech 33b:68–79

    Article  ADS  MathSciNet  Google Scholar 

  6. Wright GB (2003) Radial basis function interpolation: numerical and analytical developments. Ph.D. thesis, University of Colorado, Boulder

  7. Zhang X, Song KZ, Lu MW, Liu X (2000) Meshless methods based on collocation with radial basis functions. Comput Mech 26:333–343

    Article  MATH  Google Scholar 

  8. Wendland H (1995) Piecewise polynomial positive definite and compactly supported radial basis functions of minimal degree. Adv Comput Math 4:389–396

    Article  MATH  MathSciNet  Google Scholar 

  9. Liu GR, Gu YT (2001) A local radial point interpolation method (LRPIM) for free vibration analyses of 2-d solids. J Sound Vib 246:29–46

    Article  ADS  Google Scholar 

  10. Wang JG, Liu GR (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Methods Eng 54:1623–1648

    Article  MATH  Google Scholar 

  11. Ferreira AJM (2003) A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates. Compos Struct 59:385–392

    Article  Google Scholar 

  12. Ferreira AJM (2003) Thick composite beam analysis using a global meshless approximation based on radial basis functions. Mech Adv Mater Struct 10:271–284

    Article  Google Scholar 

  13. Ferreira AJM, Roque CMC, Martins PALS (2004) Radial basis function and higher-order shear deformation theories in the analysis of laminated composite beams and plates. Compos Struct 66:287–293

    Article  Google Scholar 

  14. Ferreira AJM, Roque CMC, Jorge RMN, Kansa EJ (2005) Static deformations and vibrations analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretizations. Compos Struct 29:1104–1114

    MATH  Google Scholar 

  15. Ferreira AJM, Roque CMC, Fasshauer GE, Jorge RMN, Batra RC (2007) Analysis of functionally graded plates by a robust meshless method. Mech Adv Mater Struct 14:577–587

    Article  Google Scholar 

  16. Leitao VMA (2001) A meshless method for Kirchhoff plate bending problems. Int J Numer Methods Eng 52:1107–1130

    Article  MATH  Google Scholar 

  17. Roque CMC, Ferreira AJM, Jorge RMN (2007) A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory. J Sound Vib 300:1048–1070

    Article  ADS  Google Scholar 

  18. Ferreira AJM, Fasshauer GE (2006) Computation of natural frequencies of shear deformable beams and plates by an RBF-pseudospectral method. Comput Methods Appl Mech Eng 196:134–146

    Article  ADS  MATH  Google Scholar 

  19. Ferreira AJM, Fasshauer GE, Batra RC, Dias Rodrigues J (2008) Static deformations and vibrations analysis of composite and sandwich plates using a layerwise theory nd RBF-PS discretizations with optimal shape parameter. Compos Struct 86:328–343

    Article  Google Scholar 

  20. Roque CMC, Cunha D, Shu C, Ferreira AJM (2011) A local radial basis functions—finite differences technique for the analysis of composite plates. Eng Anal Boundary Elements 35:363–374

    Article  MATH  MathSciNet  Google Scholar 

  21. Liew KM, Chen XL, Reddy JN (2004) Mesh-free radial basis function method for buckling analysis of non-uniformly loaded arbitrarily shaped shear deformable plates. Comput Methods Appl Mech Eng 193:205–224

    Article  ADS  MATH  Google Scholar 

  22. Liu GR, Zhang GY, Gu YT (2005) A meshfree radial point interpolation method (RPIM) for three dimensional solids. Comput Mech 36:421–430

    Article  MATH  MathSciNet  Google Scholar 

  23. Bayona V, Moscoso M, Kindelan M (2011) Optimal constant shape parameter for multiquadric based RBF-FD method. J Comput Phys 230:7384–7399

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Bayona V, Moscoso M, Kindelan M (2012) Optimal variable shape parameter for multiquadric based RBF-FD method. J Comput Phys 231:2466–2481

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 176:1905–1915

    Article  ADS  Google Scholar 

  26. Timoshenko SP, Goodier JN (1951) Theory of elasticity. McGraw-Hill, New York

    MATH  Google Scholar 

  27. Augarde CE, Deeks AJ (2008) The use of Timoshenko’s exact solution for a cantilever beam in adaptive analysis. Finite Elements Anal Des 44:595–601

    Article  Google Scholar 

  28. Bayona V, Moscoso M, Carretero M, Kindelan M (2010) RBF-FD formulas and convergence properties. J Comput Phys 229:8281–8295

    Article  ADS  MATH  Google Scholar 

  29. Hsu-Kuang C (2002) Solution of linear elastostatic and elastodynamic plane problems by the meshless local Petrov–Galerkin method. Ph.D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA

  30. Wright GB, Fornberg B (2006) Scattered node compact finite difference-type formulas generated from radial basis functions. J Comput Phys 212:99–123

    Google Scholar 

Download references

Acknowledgments

This work was supported by Spanish MICINN Grants FIS2011-28838 and CSD2010-00011 and by Madrid Autonomous Region Grant S2009-1597. M.K. acknowledges Fundación Caja Madrid for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Kindelan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonenko, S., Bayona, V. & Kindelan, M. Optimal shape parameter for the solution of elastostatic problems with the RBF method. J Eng Math 85, 115–129 (2014). https://doi.org/10.1007/s10665-013-9636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-013-9636-7

Keywords

Navigation