Skip to main content
Log in

Analysis of oblique wave interaction with a submerged perforated semicircular breakwater

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This study examines oblique wave interaction with a submerged perforated semicircular breakwater based on the linear potential theory. The fluid domain is divided into inner and outer regions by a perforated semicircular arc. The velocity potentials in the inner and outer regions are constructed by eigenfunction expansions and multipole expansions, respectively. The unknown constants in the velocity potentials are determined by matching the boundary conditions on the perforated arc. The convergence of the solution method we have developed is rapid. The reflection and transmission coefficients and the wave forces acting on the breakwater are calculated and examined. Some useful results are presented for practical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xie SL (1999) Waves forces on submerged semicircular breakwater and similar structures. China Ocean Eng 13(1):63–72

    Google Scholar 

  2. Naftzger RA, Chakrabarti SK (1979) Scattering of waves by two-dimensional circular obstacles in finite water depths. J Ship Res 23(1):32–42

    Google Scholar 

  3. Forbes LK, Schwartz LW (1982) Free-surface flow over a semicircular obstruction. J Fluid Mech 114:299–314

    Article  ADS  MATH  Google Scholar 

  4. Forbes LK (1988) Critical free-surface flow over a semi-circular obstruction. J Eng Math 22:3–13

    Article  MATH  Google Scholar 

  5. Cooker MJ, Peregrine DH, Vidal C, Dold JW (1990) The interaction between a solitary wave and a submerged semicircular cylinder. J Fluid Mech 215:1–22

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Jia DH (1999) Study on the interaction of water waves with semi-circular breakwater. China Ocean Eng 13(1):73–80

    Google Scholar 

  7. Yuan DK, Tao JH (2003) Wave forces on submerged, alternately submerged, and emerged semicircular breakwaters. Coast Eng 48(2):75–93

    Article  Google Scholar 

  8. Kasem T, Sasaki J (2010) Multiphase modeling of wave propagation over submerged obstacles using WENO and level set methods. Coast Eng J 52(3):235–259

    Article  Google Scholar 

  9. Chapman GJD (2005) A weakly singular integral equation approach for water wave problems. PhD Thesis, University of Bristol, UK

  10. Ursell F (1949) On the heaving motion of a circular cylinder on the surface of a fluid. Q J Mech Appl Math 2(2):218–231

    Article  MathSciNet  MATH  Google Scholar 

  11. Ursell F (1950) Surface waves on deep water in the presence of a submerged circular cylinder, II. Proc Camb Philos Soc 46:153–158

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Thorne RC (1953) Multipole expansions in the theory of surface waves. Proc Camb Philos Soc 49(4):707–716

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Ursell F (1968) The expansion of water-wave potentials at great distances. Proc Camb Philos Soc 64:811–826

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Wu GX (1995) The interaction of water waves with a group of submerged spheres. Appl Ocean Res 17:165–184

    Article  Google Scholar 

  15. Linton CM, McIver P (2001) Handbook of mathematical techniques for wave/structure interactions. Chapman & Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  16. Liu Y, Li HJ (2012) Analysis of wave interaction with submerged perforated semi-circular breakwaters through multipole method. Appl Ocean Res 34(1):164–172

    Article  ADS  Google Scholar 

  17. Dhinakaran G, Sundar V, Sundaravadivelu R, Graw KU (2012) Performance of a perforated submerged semicircular breakwater due to non-breaking waves. Proc. IMechE M J Eng Marit Environ 226:36–50

    Google Scholar 

  18. Zhang NC, Wang LQ, Yu YX (2005) Oblique irregular waves load on semicircular breakwater. Coast Eng J 47(4):183–204

    Article  Google Scholar 

  19. Yu XP (1995) Diffraction of water waves by porous breakwaters. J Waterway Port Coast Ocean Eng 121(6):275–282

    Article  Google Scholar 

  20. Sollitt CK, Cross RH (1972) Wave transmission through permeable breakwaters. In: Proceedings of the 13th coastal engineering conference, Vancouver, pp 1827–1846

  21. Li YC, Liu Y, Teng B (2006) Porous effect parameter of thin permeable plates. Coast Eng J 48(4):309–336

    Article  Google Scholar 

  22. Tuck EO (1975) Matching problems involving flow through small holes. Adv Appl Mech 15:89–157

    Article  MathSciNet  Google Scholar 

  23. Chwang AT (1983) A porous-wavemaker theory. J Fluid Mech 132:395–406

    Article  ADS  MATH  Google Scholar 

  24. Molin B (2011) Hydrodynamic modeling of perforated structures. Appl Ocean Res 33:1–11

    Article  ADS  Google Scholar 

  25. Faltinsen OM, Firoozkoohi R, Timokha AN (2011) Analytical modeling of liquid sloshing in a two-dimensional rectangular tank with a slat screen. J Eng Math 70(1–3):93–109

    Article  MathSciNet  MATH  Google Scholar 

  26. Gradshteyn IS, Ryzhik IM (2007) Table of integrals, series, and products, 7th edn. Academic Press, New York

    MATH  Google Scholar 

  27. Wu GX (1991) On the second order wave reflection and transmission by a horizontal cylinder. Appl Ocean Res 13(2):58–62

    Article  Google Scholar 

  28. Wu GX, Eatock Taylor R (1990) The second order diffraction force on a horizontal cylinder in finite water depth. Appl Ocean Res 12(3):106–11

    Article  Google Scholar 

  29. Ursell F (1951) Trapping modes in the theory of surface waves. Proc Camb Philos Soc 47(2):347–358

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Cho IH, Kim MH (2000) Interactions of horizontal porous flexible membrane with waves. J Waterway Port Coast Ocean Eng 126(5):245–253

    Article  Google Scholar 

  31. Dalrymple RA, Losada MA, Martin PA (1991) Reflection and transmission from porous structures under oblique wave attack. J Fluid Mech 224:625–644

    Article  ADS  MATH  Google Scholar 

  32. Liu Y, Li YC, Teng B, Jiang JJ, Ma BL (2008) Total horizontal and vertical forces of irregular waves on partially perforated caisson breakwaters. Coast Eng 55(6):537–552

    Article  Google Scholar 

  33. Young DM, Testik FY (2009) Onshore scour characteristics around submerged vertical and semicircular breakwaters. Coast Eng 56(8):868–875

    Article  Google Scholar 

  34. Evans DV, Jeffrey DC, Salter SH, Taylor JRM (1979) Submerged cylinder wave energy device: theory and experiment. Appl Ocean Res 1(1):3–12

    Article  Google Scholar 

  35. Wu GX, Eatock Taylor R (1990) The hydrodynamic force on an oscillating ship with low forward speed. J Fluid Mech 211:333–353

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Linton CM (2011) Water waves over arrays of horizontal cylinders: band gaps and Bragg resonance. J Fluid Mech 670:504–526

    Google Scholar 

Download references

Acknowledgments

We wish to thank Prof. Guo-Xiong Wu at UCL for his valuable private notes on this work. We would like to thank the four reviewers and the associate editor Dr Andrew Hogg for their valuable comments, which greatly enhanced the quality of this paper. We also wish to thank Sarah Wood for proofreading this paper. This work was supported by the National Natural Science Foundation of China (Grants 51010009 and 50909086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu.

Appendix: Multipoles with singularities on the water bottom for oblique wave

Appendix: Multipoles with singularities on the water bottom for oblique wave

Multipoles with singularities on the water bottom were given by Chapman [9]. Here the symmetric and antisymmetric multipoles, which have singularities at the semicircular breakwater centre \(r\) \(=\) 0 and satisfy Eqs. (3)–(6), are briefly introduced for the completeness of the presentation.

Solutions to Eqs. (3) and (4), which are singular at \(r\) \(=\) 0, can be written respectively as

$$\begin{aligned}&\psi _n^+ =K_{2n} \!\left( {k_y r} \right) \!\cos \! \left( {2n\theta } \right) , \quad n=0,1,2,\ldots ,\end{aligned}$$
(29)
$$\begin{aligned}&\psi _n^- =K_{2n-1} \!\left( {k_y r} \right) \!\sin \! \left( {\left( {2n-1} \right) \theta } \right) , \quad n=1,2,\ldots , \end{aligned}$$
(30)

where \(K_{n}\) is the modified Bessel function of the second kind of order \(n\). The preceding solutions can be represented as [15, Eqs. (B.101) and (B.103)]

$$\begin{aligned}&\psi _n^+ =\int _0^\infty {\cosh \! \left( {2n\mu } \right) \!\cos \! \left( {k_y x\sinh \left( \mu \right) } \right) \!{\text{ e }}^{-\nu \left( {z+h} \right) }} {\text{ d }}\mu , \quad z>-h,\end{aligned}$$
(31)
$$\begin{aligned}&\psi _n^- =\int _0^\infty {\sinh \! \left( {\left( {2n-1} \right) \mu } \right) \!\sin \! \left( {k_y x\sinh \left( \mu \right) } \right) \!{\text{ e }}^{-\nu \left( {z+h} \right) }} {\text{ d }}\mu , \quad z>-h, \end{aligned}$$
(32)

where \(\nu =k_y \cosh \mu \).

The symmetric and antisymmetric multipoles, \(\varphi _n^+ \) and \(\varphi _n^- \), may have the following forms:

$$\begin{aligned}&\varphi _n^+ =\psi _n^+ +\int _0^\infty {f^{+}\left( \mu \right) \!\cosh \! \left( {2n\mu } \right) \!\cos \! \left( {k_y x \sinh (\mu )} \right) }\!\cosh \! \left( {\nu \left( {z+h} \right) } \right) {\text{ d }}\mu ,\end{aligned}$$
(33)
$$\begin{aligned}&\varphi _n^- =\psi _n^- +\int _0^\infty {f^{-}\left( \mu \right) \!\sinh ({\left( {2n-1} \right) \mu })\!\sin \! \left( {k_y x\sinh \! \left( \mu \right) } \right) }\!\cosh ({\nu \left( {z+h} \right) }){\text{ d }}\mu . \end{aligned}$$
(34)

Obviously, Eqs. (33) and (34) satisfy the field equation in Eq. (3) and the water bottom condition in Eq. (4). The unknowns \(f^{+}(\mu )\) and \(f^{-}(\mu )\) can be determined using the free surface condition in Eq. (5). Then the symmetric and antisymmetric multipoles for the present problem can be written as

$$\begin{aligned}&\begin{aligned}&\varphi _n^+ =K_{2n} \!\left( {k_y r} \right) \!\cos ({2n\theta }) \\&\quad \qquad +\int _0^\infty {\frac{\left( {K+\nu } \right) {\text{ e }}^{-\nu h}\!\cosh \! \left( {2n\mu } \right) \!\cos \! \left( {k_y x\sinh \! \left( \mu \right) } \right) \!\cosh \! \left( {\nu \left( {z+h} \right) } \right) }{\nu \sinh \! \left( {\nu h} \right) -K\!\!\cosh \! \left( {\nu h} \right) }} {\text{ d }}\mu ,\quad n=0,1,2,\ldots , \\ \end{aligned} \end{aligned}$$
(35)
$$\begin{aligned}&\begin{aligned}&\varphi _n^- = K_{2n-1}\! \!\left( {k_y r} \right) \!\sin \! \left( {\left( {2n-1} \right) \theta } \right) \\&\quad \qquad +\int _0^\infty {\frac{\left( {K+\nu } \right) {\text{ e }}^{-\nu h}\!\sinh \! \left( {\left( {2n-1} \right) \mu } \right) \!\sin \left( {k_y x\sinh \! \left( \mu \right) } \right) \!\cosh \! \left( {\nu \left( {z+h} \right) } \right) }{\nu \sinh \! \left( {\nu h} \right) -K\!\!\cosh \! \left( {\nu h} \right) }} {\text{ d }}\mu ,\quad n=1,2,\ldots , \\ \end{aligned} \end{aligned}$$
(36)

where the path of the integration passes below the pole at \(\mu =\kappa =\ln \left( {1/{\sin \beta }+\sqrt{1/{\sin ^{2}\beta }-1}} \right) \) to satisfy the radiation conditions in Eq. (6) [34, 35].

As \(x\rightarrow \pm \infty \), we have

$$\begin{aligned}&\varphi _n^+ \sim \frac{\text{ i }\pi \!\cosh \! \left( {2n\kappa } \right) }{2k_x hN_0^2 }\cosh \! \left( {k\left( {z+h} \right) } \right) {\text{ e }}^{\pm \mathrm{{i}}k_x x},\end{aligned}$$
(37)
$$\begin{aligned}&\varphi _n^- \sim \pm \frac{\pi \!\sinh \! \left( {\left( {2n-1} \right) \kappa } \right) }{2k_x hN_0^2 }\cosh \! \left( {k\left( {z+h} \right) } \right) {\text{ e }}^{\pm \mathrm{{i}}k_x x}, \end{aligned}$$
(38)

where \(N_0^2 =\left[ {1+{\sinh \! \left( {2kh} \right) }/{\left( {2kh} \right) }} \right] /2\).

The multipoles can be written as power series expansions [29, Eq. A.4]:

$$\begin{aligned}&\varphi _n^+ =K_{2n} \!\left( {k_y r} \right) \!\cos \! \left( {2n\theta } \right) +\sum _{m=0}^\infty {A_{mn}^+ I_{2m} \!\left( {k_y r} \right) \!\cos \! \left( {2m\theta } \right) } , \quad n=0,1,2,\ldots ,\end{aligned}$$
(39)
$$\begin{aligned}&\varphi _n^- =K_{2n-1} \!\left( {k_y r} \right) \!\sin \! \left( {\left( {2n-1} \right) \theta } \right) +\sum _{m=1}^\infty {A_{mn}^- I_{2m-1}\! \left( {k_y r} \right) \!\sin \! \left( {\left( {2m-1} \right) \theta } \right) } , \quad n=1,2,\ldots , \end{aligned}$$
(40)

where \(I_{m}\) is the modified Bessel function of the first kind of order \(m\) and

$$\begin{aligned}&A_{mn}^+ =\varepsilon _m \int _0^\infty {\frac{\left( {K+\nu } \right) {\text{ e }}^{-\nu h}\cosh \! \left( {2n\mu } \right) \!\cosh \! \left( {2m\mu } \right) }{\nu \!\sinh \! \left( {\nu h} \right) -K\!\!\cosh \! \left( {\nu h} \right) }} {\text{ d }}\mu ,\end{aligned}$$
(41)
$$\begin{aligned}&A_{mn}^- =2\int _0^\infty {\frac{\left( {K+\nu } \right) {\text{ e }}^{-\nu h}\!\sinh \! \left( {\left( {2n-1} \right) \mu } \right) \!\sinh \! \left( {\left( {2m-1} \right) \mu } \right) }{\nu \sinh \! \left( {\nu h} \right) -K\!\!\cosh \! \left( {\nu h} \right) }} {\text{ d }}\mu , \end{aligned}$$
(42)

in which the path of the integration passes below the pole at \(\mu =\kappa \), and \(\varepsilon _0 =1\) and \(\varepsilon _m =2\) (\(m\ge 1)\).

Computational methods for such types of integrals in Eqs. (41) and (42) can be found in Linton [36, Eqs. (3.7) and (4.11)]. For example, the integral in Eq. (41) can be rewritten as

$$\begin{aligned} \begin{aligned} A_{mn}^+&= 2\varepsilon _m \text{ PV }\int _0^b {\frac{S\left( {\nu ,\mu } \right) -\frac{k_y \sinh \left( \mu \right) \left[ {\tanh \left( {\nu h} \right) +{\nu h}/{\cosh ^{2}\left( {\nu h} \right) }} \right] }{k_x \left[ {\tanh \left( {kh} \right) +{kh}/{\cosh ^{2}\left( {kh} \right) }} \right] }S({k,\kappa })}{\nu \tanh \! \left( {\nu h} \right) -K}} {\text{ d }}\mu \\&\quad + 2\varepsilon _m \int _b^{+\infty } {\frac{(K+\nu )\!\cosh \! \left( {2n\mu } \right) \!\cosh \! \left( {2m\mu } \right) }{\left[ {\nu \tanh \! \left( {\nu h} \right) -K} \right] \left( {{\text{ e }}^{2\nu h}+1} \right) }} {\text{ d }}\mu + \varepsilon _m \frac{\text{ i }\pi \!\text{ cosh }\!\left( {\text{2 }m\kappa } \right) \!\text{ cosh }\!\left( {\text{2 }n\kappa } \right) }{2k_x hN_0^2 }, \end{aligned} \end{aligned}$$
(43)

where PV denotes the principal value integral; the function \(S\left( {x,y} \right) \) is defined as \(S\left( {x,y} \right) =(K+x)\cosh \! \left( {2ny} \right) \cosh \left( {2my} \right) /{\left( {{\text{ e }}^{2xh}+1} \right) }\); the symbol \(b\) denotes the positive real root of the relationship

$$\begin{aligned} \left[ {k_y \cosh \! \left( b \right) } \right] \tanh \! \left( {k_y h\!\cosh \left( b \right) } \right) =2K-k_y \tanh \! \left( {k_y h} \right) \end{aligned}$$
(44)

using the following integral:

$$\begin{aligned} \begin{aligned} \text{ PV }\int _0^{2\left[ {K-k_y \tanh \left( {k_y h} \right) } \right] } {\frac{{\text{ d }}\tilde{\nu }}{\tilde{\nu }-\left[ {K-k_y \tanh \! \left( {k_y h} \right) } \right] }}&=\text{ PV }\int _0^b {\frac{k_y \sinh \! \left( \mu \right) \!\left[ {\tanh \! \left( {\nu h} \right) +{\nu h}/{\cosh ^{2}\!\left( {\nu h} \right) }} \right] }{\nu \;\tanh \! \left( {\nu h} \right) -K}} {\text{ d }}\mu = 0, \end{aligned} \end{aligned}$$
(45)

in which \(\tilde{\nu }=\nu \;\tanh \! \left( {\nu h} \right) -k_y \tanh \! \left( {k_y h} \right) \). A similar expression can be obtained for Eq. (42).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Li, H.J. Analysis of oblique wave interaction with a submerged perforated semicircular breakwater. J Eng Math 83, 23–36 (2013). https://doi.org/10.1007/s10665-013-9625-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-013-9625-x

Keywords

Navigation