Advertisement

Journal of Engineering Mathematics

, Volume 81, Issue 1, pp 191–211 | Cite as

Wavefunction delocalization in quantum dot arrays: an asymptotic analysis

  • D. A. EdwardsEmail author
  • W. M. Reid
  • M. F. Doty
Article

Abstract

Intermediate-band solar cells using quantum dot arrays (QDAs) are theoretically predicted to significantly increase the efficiency with which solar energy can be harvested. In the limit of identical quantum dots, the wavefunction for electrons in a QDA will be fully delocalized. Fully delocalized wavefunctions have been theoretically shown to reduce thermal losses and consequently increase photovoltaic device efficiency. However, even small nonuniformities can cause electrons to localize in a single quantum dot, negating any advantages from delocalized states. In this work a modified Schrödinger equation is used to model a two-dot array with nonuniform quantum dots and solved using perturbation methods. This result is extended to N-dot arrays, and several metrics are constructed to characterize the degree of delocalization. Our results, which compare favorably with numerical simulations, show explicitly how the amount of delocalization depends on key design parameters.

Keywords

Photovoltaics Quantum dot array Schrödinger equation Tunnelling Wavefunction delocalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lopez N, Reichertz LA, Yu KM, Campman K, Walukiewicz W (2011) Engineering the electronic band structure for multiband solar cells. Phys Rev Lett 106: 028701ADSCrossRefGoogle Scholar
  2. 2.
    Luque A, Marti A (1997) Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys Rev Lett 78: 5014–5017ADSCrossRefGoogle Scholar
  3. 3.
    Luque A, Marti A (2010) The intermediate band solar cell: progress toward the realization of an attractive concept. Adv Mater 22: 160–174CrossRefGoogle Scholar
  4. 4.
    Bailey CG, Forbes DV, Raffaelle RP, Hubbard SM (2011) Near 1 v open circuit voltage InAs/GaAs quantum dot solar cells. Appl Phys Lett 98: 163105CrossRefGoogle Scholar
  5. 5.
    Luque A, Linares PG, Antolin E, Canovas E, Farmer CD, Stanley CR, Marti A (2010) Multiple levels in intermediate band solar cells. Appl Phys Lett 96: 013501ADSCrossRefGoogle Scholar
  6. 6.
    Antolin E, Marti A, Olea J, Pastor D, Gonzalez-Diaz G, Martil I, Luque A (2009) Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material. Appl Phys Lett 94: 042115ADSCrossRefGoogle Scholar
  7. 7.
    Luque A, Marti A, Antolin E, Tablero C (2006) Intermediate bands versus levels in nonradiative recombination. Physica B 382: 320–327ADSCrossRefGoogle Scholar
  8. 8.
    Tomic S (2010) Intermediate-band solar cells: Influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays. Phys Rev B 82: 195321ADSCrossRefGoogle Scholar
  9. 9.
    Popescu V, Bester G, Hanna MC, Norman AG, Zunger A (2008) Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells. Phys Rev B 78: 205321ADSCrossRefGoogle Scholar
  10. 10.
    Lagendijk A, van Tiggelen B, Wiersma DS (2009) Fifty years of Anderson localization. Phys Today 62: 24–29CrossRefGoogle Scholar
  11. 11.
    Reid WM, Driscoll T, Doty MF (2012) Forming delocalized intermediate states with realistic quantum dots. J Appl Phys 111: 056102ADSCrossRefGoogle Scholar
  12. 12.
    Mahan BH, Myers RJ (1987) University chemistry. 4. Benjamin Cummings, Menlo ParkGoogle Scholar
  13. 13.
    Levy-Leblond JM (1995) Position-dependent effective mass and Galilean invariance. Phys Rev A 52: 1845–1849MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Davies PCW (1984) Quantum mechanics. Routledge & Kegan Paul, LondonGoogle Scholar
  15. 15.
    Landshoff P, Metherell A (1979) Simple quantum physics. Cambridge University Press, New YorkGoogle Scholar
  16. 16.
    Misra PK (2010) Physics of condensed matter. Academic Press, BostonGoogle Scholar
  17. 17.
    Hillhouse HW, Beard MC (2009) Solar cells from colloidal nanocrystals: fundamentals, materials, devices, and economics. Curr Opin Colloid Int Sci 14: 245–259CrossRefGoogle Scholar
  18. 18.
    Bailey CG, Hubbard SM, Forbes DV, Aguinaldo R, Cress CD, Polly SJ, Raffaelle RP (2009) Effect of barrier thickness on strain balanced InAs/GaAs QD solar cells. In: Proceedings of the photovoltaic specialists conference (PVSC), 2009 34th IEEE, pp 000137–000140Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkUSA
  2. 2.Department of Materials Science and EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations