Skip to main content
Log in

Stretching of a liquid layer underneath a semi-infinite fluid

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Exact similarity solutions of the Navier–Stokes equation are derived describing the flow of a liquid layer coated on a stretching surface underneath another semi-infinite fluid. In the absence of hydrodynamic instability, the interface remains flat as the layer thickness decreases in time. When the physical properties of the fluids are matched, we obtain Crane’s analytical solution for two-dimensional (2D) flow and a corresponding numerical solution for axisymmetric flow. When the rate of stretching of the surface is constant in time, the temporal evolution of the interface between the layer and the overlying fluid is computed by integrating in time a system of coupled partial differential equations for the velocity in each fluid together with an ordinary differential equation expressing kinematic compatibility at the interface, subject to appropriate boundary, interfacial, and far-field conditions. Multiple solutions are found in certain ranges of the density and viscosity ratios. Additional similarity solutions are presented for accelerated 2D and axisymmetric stretching. The numerical prefactors that appear in the analytical expressions for the interface location and wall shear stress are presented for different ratios of the densities and viscosities of the two fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crane LJ (1970) Flow past a stretching plate. Z Angew Math Phys 21: 645–647

    Article  Google Scholar 

  2. Wang CY (1984) The three-dimensional flow due to a stretching flat surface. Phys Fluids 27: 1915–1917

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Pozrikidis C (2011) Introduction to theoretical and computational fluid dynamics. 2. Oxford University Press, New York

    MATH  Google Scholar 

  4. Hiemenz K (1911) Die Grenzschicht an einem in den gleichförmigen flüssigkeitsstrom eingetauchten geraden kreiszylinder. Dinglers Polyt J 326(21): 321–410

    Google Scholar 

  5. Homann F (1936) Der einfluß großer zähigkeit bei der strömung um den zylinder und um die kugel. Z Angew Math Mech 16(3): 153–164

    Article  MATH  Google Scholar 

  6. Sakiadis BC (1961) Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J 7: 26–28

    Article  Google Scholar 

  7. Sakiadis BC (1961) Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface. AIChE J 7: 221–225

    Article  Google Scholar 

  8. Wang CY (1990) Liquid film on an unsteady stretching surface. Q Appl Math 48: 601–610

    MATH  Google Scholar 

  9. Vleggaar J (1977) Laminar boundary-layer behavior on continuous accelerated surfaces. Chem Eng Sci 32: 1517–1525

    Article  Google Scholar 

  10. Yeckel A, Middleman S (1987) Removal of a viscous film from a rigid plane surface by an impinging liquid jet. Chem Eng Commun 50: 165–175

    Article  Google Scholar 

  11. Yeckel A, Strong L, Middleman S (1994) Viscous film flow in the stagnation region of the jet impinging on planar surface. AIChE J 40: 1611–1617

    Article  Google Scholar 

  12. Pozrikidis C, Blyth MG (2004) Effect of stretching on interfacial stability. Acta Mech 170: 149–162

    Article  MATH  Google Scholar 

  13. Blyth MG, Pozrikidis C (2995) Stagnation-point flow against a liquid film on a plane wall. Acta Mech 180: 203–219

    Article  Google Scholar 

  14. Pozrikidis C (2009) Numerical computation in science and engineering. 2. Oxford University Press, New York

    Google Scholar 

  15. Shampine LF (1980) Implementation of implicit formulas for the solution of ODE. SIAM J Sci Stat Comput 1: 103–118

    Article  MathSciNet  MATH  Google Scholar 

  16. Shampine LF, Reichelt MW (1997) The Matlab Ode suite. SIAM J Sci Comput 18: 1–22

    Article  MathSciNet  MATH  Google Scholar 

  17. Salane DE (1986) Adaptive routines for forming Jacobians numerically. Technical Report SAND86-1319, Sandia National Laboratories, Albuquerque

  18. Usha R, Sridharan R (1995) The axisymmetrical motion of a liquid-film on an unsteady stretching surface. J Fluids Eng Trans ASME 117: 81–85

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, J.M., Pozrikidis, C. Stretching of a liquid layer underneath a semi-infinite fluid. J Eng Math 79, 35–50 (2013). https://doi.org/10.1007/s10665-012-9539-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-012-9539-z

Keywords

Navigation