Journal of Engineering Mathematics

, Volume 76, Issue 1, pp 157–180

High-frequency diffraction of a electromagnetic plane wave by an imperfectly conducting rectangular cylinder

Article

Abstract

We shall consider the problem of determining the scattered far-wave field produced when a plane E-polarized wave is incident on an imperfectly conducting rectangular cylinder. On the basis of the uniform asymptotic solution for the problem of the diffraction of a plane wave by a right-angled impedance wedge, in conjunction with Keller’s method and multiple diffraction, a high-frequency far-field solution to the problem is given for two edge diffractions.

Keywords

Absorbing rectangular cylinder Diffraction High-frequency Impedance rectangle Wedge asymptotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nechayev YI, Constantinou CC (2006) Improved heuristic diffraction coefficients for an impedance wedge at normal incidence. IEE Proc Microwav Antennas Propag 153(2): 125–132CrossRefGoogle Scholar
  2. 2.
    Bertoni HL (2000) Radio propagation for modern wireless systems. Pretice Hall, New Jersey, pp 53–83, 107–139Google Scholar
  3. 3.
    Driessen EFC, de Dood J (2009) The perfect absorber. Appl Phys Lett 94: 171109ADSCrossRefGoogle Scholar
  4. 4.
    Ando M (1990) The geometrical theory of diffraction, Chap. 7. In: Yamashita E (ed) Analysis methods for electromagnetic wave problems. Artech House, BostonGoogle Scholar
  5. 5.
    Chen G, Bridges TJ, Zhou J (1988) Minimizing the reflection of waves by surface impedance using boundary elements and global optimization. Wave Motion 10: 239–255MATHCrossRefGoogle Scholar
  6. 6.
    Rawlins AD (2005) The optimum orientation of an absorbing barrier. Proc R Soc A 461: 2369–2383MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Tretyakov S (2003) The geometrical theory of diffraction. Analytical modeling in applied electromagnetics. Artech House, BostonGoogle Scholar
  8. 8.
    Sato K, Manabe T, Polivka J, Ihara T, Kasashima Y, Yamaki K (1996) Measurement of the complex refractive index of concrete at 57.5 GHz. IEEE Trans Antenna Propag 44(1): 35–40ADSCrossRefGoogle Scholar
  9. 9.
    Li L, Wang Y, Gong K (1998) Measurements of building construction materials at Ka-Band. Int J Infrared Millim Waves 19(9): 1293–1298CrossRefGoogle Scholar
  10. 10.
    Siqueiros JM, Regalado LE, Machorro R (1988) Determination of (n,k) for absorbing thin films using reflectance measurements. Appl Opt 27(20): 4260–4264ADSCrossRefGoogle Scholar
  11. 11.
    Zhao X, Rekanos IT, Vainikainen P (2003) A recommended Maliuzhinets diffraction coefficients for right angle lossy wedges. In: IEEE 5th European personal mobile communications conference, pp 195–198Google Scholar
  12. 12.
    El-Sallabi HM, Vainikainen P (2003) A new Heuristic diffraction coefficient for lossy dielectric wedges at normal incidence. IEEE Antennas Wireless Propag Lett 1: 165–168ADSCrossRefGoogle Scholar
  13. 13.
    Demetrescu C, Constantinou CC, Mehler MJ (1997) Scattering by a right-angled lossy dielectric wedge. IEE Proc Microwav Antennas Propag 144(5): 392–396CrossRefGoogle Scholar
  14. 14.
    Demetrescu C, Constantinou CC, Mehler MJ (1998) Corner and rooftop diffraction in radiowave propagation prediction tools: a review. In: 48th IEEE vehicular technology conference, pp 515–519Google Scholar
  15. 15.
    Rawlins AD (2009) Asymptotics of a right-angled impedance wedge. J Eng Math 65: 355–366MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Rawlins AD (1990) Diffraction of an E- or H-polarized electromagnetic plane wave by a right-angle wedge with imperfectly conducting faces. Q J Mech Appl Math 43(2): 161–172MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Morse BJ (1964) Diffraction by polygonal cylinders. J Math Phys 5: 199–214ADSMATHCrossRefGoogle Scholar
  18. 18.
    van Bladel J (2007) Electromagnetic fields, 2nd edn. Wiley, New JerseyCrossRefGoogle Scholar
  19. 19.
    Mei KK, van Bladel J (1963) Scattering by a perfectly-conducting rectangular cylinders. IEEE Trans Antennas Propag 11: 185–192ADSCrossRefGoogle Scholar
  20. 20.
    Mei KK (1963) Scattering of high-frequency waves by perfectly-conducting rectangular cylinders. IRE Int Convention Record 11: 132–136CrossRefGoogle Scholar
  21. 21.
    Hinata T, Yamasaki T, Tamura M, Honsono T (1983) Scattering of plane electromagnetic waves by conducting rectangular cylinders. Electron Commun Jpn 66(8): 63–73CrossRefGoogle Scholar
  22. 22.
    Cheung DH, Jull EV (2000) Antenna pattern scattering by rectangular cylinders. IEEE Trans Antennas Propag 48(10): 1691–1698ADSCrossRefGoogle Scholar
  23. 23.
    Topsakal E, Büyükaksoy A, Idemen M (2000) Scattering of electromagnetic waves by a rectangular impedance cylinder. Wave Motion 31: 273–296MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Senior TBA (1960) Impedance boundary conditions for imperfectly conducting surfaces. Appl Sci Res B 8(1): 418–436MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Keller JB (1962) A geometrical theory of diffraction. J Opt Soc Am 52(2): 116–130ADSCrossRefGoogle Scholar
  26. 26.
    Zitron N, Karp SN (1961) Higher order approximations in multiple scattering. I Two-dimensional scalar case. J Math Phys 2: 394–402MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    Martin PA (2006) Multiple scattering. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  28. 28.
    Jones DS (1964) The theory of electromagnetism. Pergamon Press, Oxford, pp 608–612MATHGoogle Scholar
  29. 29.
    Rawlins AD (1976) Diffraction of sound by a rigid screen with an absorbent edge. J Sound Vib 47(4): 523–541ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Mathematical SciencesBrunel UniversityUxbridgeUK

Personalised recommendations