Skip to main content
Log in

On general principles of the theory of constitutive relations in classical continuum mechanics

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The traditional principles of the theory of constitutive relations in classical continuum mechanics are discussed. In light of the approaches by A. A. Ilyushin and by W. Noll, the equivalence and the completeness of their general reduced forms of constitutive relations for simple classical media are noted. First, it is mentioned that a possible presence of internal kinematic constraints is rarely taken into account and needs special modifications in formulating the principles and relations. Secondly, a systematic study of internal body forces in constitutive relations has not been done before. Here a unified approach to the theory of constitutive relations is proposed to describe properties of deformation resistance of a body including both internal kinematic constraints and internal body forces. The general reduced forms of the system of constitutive relations are derived in terms of different definitions of a dynamical process in a body. The case of a simple body is considered in detail in view of the theory of objective tensors, their diagrams and frame-independent relations between objective tensors. The completeness of Ilyushin’s and Noll’s types of relations for the most general constitutive formulations is noted and confirmed by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ilyushin AA (1948) Plastichnost’. Uprugo-plasticheskiye deformatsii (Plasticity. Elastic-plastic deformations). Gostekhizdat, Moscow-Leningrad (see also Iliouchine A (1956) Plasticite. Eyrolles, Paris)

  2. Ilyushin AA (1954) On relations between stresses and small strains in continuum mechanics. Appl Math Mech 18(6): 641–666

    MathSciNet  Google Scholar 

  3. Ilyushin AA (1963) Plastichnost’. Osnovy obshchey matematicheskoy teorii (Plasticity. Foundations of the General Mathematical Theory). Academy of Sciences of the USSR, Moscow

    Google Scholar 

  4. Ilyushin AA (1971) Mekhanika sploshnoy sredy (Continuum mechanics). Moscow State University Press, Moscow, 1971 (see also Second Edition, 1978. Third Edition, 1990)

  5. Ilyushin AA (1994) Functionals and irrevesibility measures on sets of processes in continuum mechanics (CM). Trans Acad Sci USSR 337(1): 48–50

    MathSciNet  Google Scholar 

  6. Ilyushin AA (1996) Non-symmetry of strain and stress tensors in continuum mechanics. Vestnik Moskovskogo Universiteta (Bulletin of Moscow University), Ser 1. Mathematics. Mechanics 5: 6–14

    MathSciNet  Google Scholar 

  7. Ilyushin AA, Ilyushina GA (1983) Problems of thermodynamics of irreversible processes. Vestnik Moskovskogo Universiteta (Bulletin of Moscow University), Ser 1. Mathematics. Mechanics 3: 73–80

    MathSciNet  Google Scholar 

  8. Ilyushin AA, Lensky VS (1959) Soprotivleniye materialov (Strength of materials). Fizmatgiz, Moscow (see also Ilyushin AA, Lensky VS (1967) Strength of materials. Pergamon, New York

  9. Ilyushin AA, Lomakin VA (1971) Moment theories in mechanics of solids. Strength and plasticity. Nauka, Moscow, pp 54–60

    Google Scholar 

  10. Ilyushin AA, Pobedria BE (1970) Osnovy matematicheskoy teorii termovyazkouprugosti (Foundations of mathematical theory of thermoviscoelasticity). Nauka, Moscow

    Google Scholar 

  11. Ilyushin AA (2003) Izbrannye trudy. Tom 1 (1935–1945) (Selected papers, vol 1 (1935–1945)). Fizmatlit, Moscow

    Google Scholar 

  12. Ilyushin AA (2004) Izbrannye trudy. Tom 2 (1946–1966) Plastichnost’ (Selected papers (1946–1966), vol 2. Plasticity). Fizmatlit, Moscow

    Google Scholar 

  13. Ilyushin AA (2007) Izbrannye trudy. Tom 3 Teoriya termovyazkouprugosti (Selected papers, vol 3. Theory of thermoviscoelasticity). Fizmatlit, Moscow

    Google Scholar 

  14. Ilyushin AA (2009) Izbrannye trudy. Tom 4 Modelirovanie dinamicheskikh processov v tverdykh telakh i inzhenernye prilozheniya (Selected papers Vol 4. Modelling of dynamic processes in solids and engineeric applications). Fizmatlit, Moscow

    Google Scholar 

  15. Noll W (1958) A mathematical theory of the mechanical behavior of continuous media. Arch Rat Mech Anal 2: 197–226

    Article  MATH  Google Scholar 

  16. Truesdell C (1972) A first course in rational continuum mechanics. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  17. Truesdell C, Noll W (1965) The nonlinear field theories of mechanics. Encyclopedia of physics, vol III/3. Springer-Verlag, Berlin (see also Second Edition, 1992. Third Edition, 2004)

  18. Noll W (1967) Materially uniform simple bodies with inhomogeneities. Arch Rat Mech Anal 27: 1–32

    Article  MathSciNet  Google Scholar 

  19. Noll W (1972) A new mathematical theory of simple materials. Arch Rat Mech Anal 48: 1–50

    Article  MathSciNet  MATH  Google Scholar 

  20. Noll W (1973) Lectures on the foundations of continuum mechanics and thermodynamics. Arch Rat Mech Anal 52: 62–92

    Article  MathSciNet  MATH  Google Scholar 

  21. Antman SS (2005) Nonlinear problems of elasticity. Springer, New York

    MATH  Google Scholar 

  22. Astarita G, Marrucci G (1974) Principles of non-newtonian fluid mechanics. McGraw-Hill, New York

    Google Scholar 

  23. Ciarlet PG (1988) Mathematical elasticity. North-Holland, Amsterdam

    MATH  Google Scholar 

  24. Germain P (1973) Course de Mécanique des Millieux Continus. Théorie Générale. Masson, Paris

    Google Scholar 

  25. Gurtin ME (1981) An introduction to continuum mechanics. Academic Press, New York

    MATH  Google Scholar 

  26. Levitas VI (1987) Bol’shie uprugo-plasticheskie deformacii materialov pri vysokom davlenii (Large elastoplastic deformations of materials under high pressure). Naukova Dumka, Kiev

    Google Scholar 

  27. Lourie AI (1980) Nelineynaya teoriya uprugosti (Nonlinear theory of elasticity). Nauka, Moscow

    Google Scholar 

  28. Maugin GA (1992) The thermomechanics of plasticity and fracture. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  29. Mueller I (1984) Thermodynamics. Pitman, Boston

    Google Scholar 

  30. Pobedria BE, Georgievskii DV (2006) Osnovy mekhaniki sploshnoi sredy (Foundations of continuum mechanics). Fizmatlit, Moscow

    Google Scholar 

  31. Pozdeyev AA, Trusov PV, Nyashin YuI (1986) Bol’shie upugo-plasticheskie deformacii (Large elastoplastic deformations). Nauka, Moscow

    Google Scholar 

  32. Silhavy M (1997) The mechanics and thermodynamics of continuous media. Springer, Berlin

    MATH  Google Scholar 

  33. Wilmanski K (1998) Thermomechanics of continua. Springer, Berlin

    Book  MATH  Google Scholar 

  34. Antman SS, Marlow RS (1991) Material constraints, Lagrange multipliers, and compatibility. Arch Rat Mech Anal 116: 257–299

    Article  MathSciNet  MATH  Google Scholar 

  35. Gurtin ME, Podio-Guidugli P (1973) The thermodynamics of constrained materials. Arch Rat Mech Anal 51: 192–208

    Article  MathSciNet  MATH  Google Scholar 

  36. Podio-Guidugli P (2000) The compatibility constraint in linear elasticity. J Elast 59: 393–398

    Article  MATH  Google Scholar 

  37. Podio-Guidugli P, Vianello M (1989) Constraint manifolds for isotropic solids. Arch Rat Mech Anal 105: 105–121

    Article  MathSciNet  MATH  Google Scholar 

  38. Sedov LI (1973) Mekhanika sploshnoy sredy (Continuum mechanics). Nauka, Moscow

    Google Scholar 

  39. DeSimone A, Podio-Guidugli P (1995) Inertial and self interactions in structured continua: liquid crystals and magnetostrictive solids. Meccanica 30: 629–640

    Article  MathSciNet  MATH  Google Scholar 

  40. Sobolev SL (1989) Izbrannye voprosy teorii funkcional’nykh prostranstv i obobshchennykh funkciy (Selected problems of the theory of functional spaces and distributions). Nauka, Moscow

    Google Scholar 

  41. Ogden RW (1984) On Eulerian and Lagrangean objectivity in continuum mechanics. Arch Mech 36: 207–218

    MathSciNet  MATH  Google Scholar 

  42. Brovko GL (1996) Development of the mathematical apparatus and the foundations of the general theory of constitutive relations in continuum mechanics. DSci Dissertation, Moscow University

  43. Brovko GL (2006) Problems of invariance in classical and nonclassical models of continua. In: Kiyko IA, Vasin RA, Brovko GL (eds) Elasticity and anelasticity. URSS, Moscow, pp 110–123

    Google Scholar 

  44. Brovko GL (2009) Effective invariance properties of processes and relations in continuum mechanics. In: Modern problems of mathematics and mechanics. Vol 2. Mechanics. Issue 1. Moscow University Press, Moscow, pp 108–126

  45. Brovko GL (1990) Material and spatial representations of the constitutive relations of deformable media. J Appl Math Mech 54: 668–677

    Article  MathSciNet  MATH  Google Scholar 

  46. Cotter BA, Rivlin RS (1955) Tensors assotiated with time-dependent stress. Quart Appl Math 3: 177–188

    MathSciNet  Google Scholar 

  47. Dienes JK (1979) On the analysis of rotation and stress rate in deforming bodies. Acta Mech 32: 217–232

    Article  MathSciNet  MATH  Google Scholar 

  48. Jaumann G (1911) Geschlossenes system physikalischer und chemischer differenzialgesetze. Sitzber Akad Wiss Wien 120: 385–530

    MATH  Google Scholar 

  49. Oldroyd JG (1950) On the formulation of rheological equations of state. Proc R Soc Lond A 200: 523–541

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Sedov LI (1960) Different definitions of the rate of change of a tensor. J Appl Math Mech 24: 579–586

    Article  MathSciNet  MATH  Google Scholar 

  51. Truesdell C (1955) Hypo-elasticity. J Rat Mech Anal 4: 83–133

    MathSciNet  MATH  Google Scholar 

  52. Zaremba S (1903) Sur une forme perfectionee de la theorie de la relaxation. Bull Acad Sci Cracovie 594–614

  53. Brovko GL (1989) Notions of process image and five-dimensional isotropy of material properties at finite strains. Doklady Akademii Nauk SSSR 308(3): 565–570

    MathSciNet  Google Scholar 

  54. Bell JF (1985) Contemporary perspectives in finite strain plasticity. Int J Plast 1: 3–27

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George L. Brovko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brovko, G.L. On general principles of the theory of constitutive relations in classical continuum mechanics. J Eng Math 78, 37–53 (2013). https://doi.org/10.1007/s10665-011-9508-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-011-9508-y

Keywords

Navigation