Skip to main content
Log in

Water-table response to tidal forcing at sloping beaches

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The groundwater response to tidal forcing is described by Laplace’s equation for the hydraulic head subject to appropriate boundary conditions. A previous solution to this problem based on long-wave and shallow-aquifer approximations is extended to higher-order and a general solution scheme, automated in Mathematica, is described. The solution can, in principle, be extended to arbitrary order, but is restricted to a detailed study of the properties of the solution when truncated to sixth-order. These results show that the mean water table height increases throughout the aquifer to a steady inland height elevated above mean sea level. The phase shift of the fluctuations and the asymmetry of the pore drainage process are investigated using Fourier analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Philip J (1973) Periodic nonlinear diffusion: an integral relation and its physical consequences. Aust J Phys 26: 513–519

    Article  MathSciNet  ADS  Google Scholar 

  2. Nielsen P (1990) Tidal dynamics of the water table in beaches. Water Resour Res 26(9): 2127–2134

    ADS  Google Scholar 

  3. Austin MJ, Masselink G (2006) Swash-groundwater interaction on a steep gravel beach. Cont Shelf Res 26: 2503–2519. doi:10.1016/j.csr.2006.07.031

    Article  ADS  Google Scholar 

  4. Cartwright N, Li L, Nielsen P (2004) Response of the salt-freshwater interface in a coastal aquifer to a wave-induced groundwater pulse: field observations and modelling. Adv Water Resour 27: 297–303. doi:10.1016/j.advwatres.2003.12.005

    Article  ADS  Google Scholar 

  5. Horn DP (2006) Measurements and modelling of beach groundwater flow in the swash-zone: a review. Cont Shelf Res 26: 622–652. doi:10.1016/j.csr.2006.02.001

    Article  ADS  Google Scholar 

  6. Li L, Barry DA, Parlange J, Pattiaratchi CB (1997) Beach water table fluctuations due to wave run-up: capillarity effects. Water Resour Res 33: 925–945

    ADS  Google Scholar 

  7. Li L, Barry D, Cunningham C, Stagnitii F, Parlange J-Y (2000) A two-dimensional analytical solution of groundwater responses to tidal loading in an estuary and ocean. Adv Water Resour 23: 825–833. doi:10.1016/S0309-1708(00)00016-6

    Article  Google Scholar 

  8. Li L, Dong P, Barry DA (2002) Tide-induced water table fluctuations in coastal aquifers bounded by rhythmic shorelines. J Hydraul Eng 128(10): 925–933

    Article  Google Scholar 

  9. Trefry MG, Svensson TJA, Davis GB (2007) Hypoaigic influences on groundwater flux to a seasonally saline river. J Hydrol 335: 330–353

    Article  Google Scholar 

  10. Ataie-Ashtiani B, Volker RE, Lockington DA (1999) Tidal effects on sea water intrusion in unconfined aquifers. J Hydrol 216: 17–31. doi:10.1016/S0022-1694(98)00275-3

    Article  Google Scholar 

  11. Protano G, Riccobono F, Sabatini G (2000) Does salt water intrustion constitute a mercury contamination risk for coastal fresh water aquifers?. Environ Pollut 110: 451–458

    Article  Google Scholar 

  12. Smiles DE, Stokes AN (1976) Periodic solutions of a nonlinear diffusion equation used in groundwater flow theory: examination using a Hele-Shaw model. J Hydrol 31: 27–35

    Article  Google Scholar 

  13. Knight JH (1981) Steady periodic flow through a rectangular dam. Water Resour Res 17(4): 1222–1224

    Article  ADS  Google Scholar 

  14. Glover RE (1959) The pattern of fresh-water flow in a coastal aquifer. J Geophys Res 64: 457–459

    Article  ADS  Google Scholar 

  15. Robinson C, Li L, Barry D (2007) Effect of tidal forcing on a subterranean estuary. Adv Water Resour 30(4): 851–865. doi:10.1016/j.advwatres.2006.07.006

    Article  ADS  Google Scholar 

  16. Westbrook SJ, Rayner JL, Davis GB, Clement TP, Bjerg PL, Fisher SJ (2005) Interaction between shallow groundwater, saline surface water and contaminant discharge at a seasonally and tidally forced estuarine boundary. J Hydrol 302: 255–269. doi:10.1016/j.jhydrol.2004.07.007

    Article  Google Scholar 

  17. International Symposium on Water Resources and the Urban Environment, Review of analytical studies of tidal groundwater flow in coastal aquifer systems

  18. Artiles W, Kraenkel RA (2007) An exact equation for the free surface of a fluid in a porous medium. SIAM J Appl Math 67(3): 619–629. doi:10.1137/050644835

    Article  MATH  MathSciNet  Google Scholar 

  19. Lanyon J, Eliot E, Clarke D (1982) Groundwater level variation during semidiurnal spring tidal cycles on a sandy beach. Aust J Mar Freshw Res 33: 377–400

    Article  Google Scholar 

  20. Li L, Barry DA, Stagnitti F, Parlange JY, Jeng DS (2000) Beach water table fluctuations due to spring-neap tides: moving boundary effects. Adv Water Resour 23: 817–824. doi:10.1016/S0309-1708(00)00017-8

    Article  Google Scholar 

  21. Bear J (1972) Dynamics of fluids in porous media. American Elsevier Publishing Company Inc., New York

    MATH  Google Scholar 

  22. Ataie-Ashtiani B, Volker RE, Lockington DA (2001) Tidal effects on groundwater dynamics in unconfined aquifers. Hydrol Process 15: 655–669

    Article  ADS  Google Scholar 

  23. Teo HT, Jeng DS, Seymour BR, Barry DA, Li L (2003) A new analytical solution for water table fluctuations in coastal aquifers with sloping beaches. Adv Water Resour 26: 1239–1247. doi:10.1016/j.advwatres.2003.08.004

    Article  ADS  Google Scholar 

  24. Parlange J, Stagnitti F, Starr J, Braddock R (1984) Free-surface flow in porous media and periodic solution of the shallow-flow approximation. J Hydrol 70(1–4): 251–263. doi:10.1016/0022-1694(84)90125-2

    Article  Google Scholar 

  25. Jeng D-S, Seymour B, Barry D, Li L, Parlange J-Y (2005) New approximation for free surface flow of groundwater: capillarity correction. Adv Water Resour 28: 1032–1039. doi:10.1016/j.advwatres.2004.05.012

    Article  ADS  Google Scholar 

  26. Turner IL, Coates BP, Acworth RI (1996) The effects of tides and waves on water-table elevations in coastal zones. Hydrogeol J 4: 51–69. doi:10.1007/s100400050090

    Article  ADS  Google Scholar 

  27. Mao X, Enot P, Barry D, Li L, Binley A, Jeng D (2006) Tidal influence on behaviour of a coastal aquifer adjacent to a low-relief estuary. J Hydrol 327(1–2): 110–127. doi:10.1016/j.jhydrol.2005.11.030

    Article  Google Scholar 

  28. Blyth MG, Vanden-Broeck JM (2008) Free-surface flow over a trapped bubble. IMA J Appl Math 73: 803–814

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie E. Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, M.E., Trefry, M.G., Fowkes, N. et al. Water-table response to tidal forcing at sloping beaches. J Eng Math 69, 291–311 (2011). https://doi.org/10.1007/s10665-010-9407-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-010-9407-7

Keywords

Navigation