Skip to main content
Log in

An analytical formulation of bispectral densities for multiple degree-of-freedom systems

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Expressions for the bispectral density functions for multi-degree-of-freedom spring–mass–damper systems possessing quadratic nonlinearities and subject to Gaussian excitation are derived. The derivation uses a Volterra-series model for the system response and yields expressions for both auto-spectra, where the output of only one degree-of-freedom is used, and cross-spectra, where the bispectral density contains multiple output-response time series. The proposed formulation is used to identify the presence and location of quadratic nonlinearities in multiple degree-of-freedom systems. Results show that the ability to detect and localize nonlinearity is heavily dependent on which particular bispectral density is utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hinich MJ, Clay CS (1968) The application of the discrete Fourier transform in the estimation of power spectra, coherence, and bispectra of geophysical data. Rev Geophys 6(3): 347–363

    Article  ADS  Google Scholar 

  2. Richardson AM, Hodgkiss WS (1994) Bispectral analysis of underwater acoustic data. J Acoust Soc Am 96(2): 828–837

    Article  ADS  Google Scholar 

  3. Hinich MJ, Wilson GR (1990) Detection of non-Gaussian signals in non-Gaussian noise using the bispectrum. IEEE Trans Acoust Speech Signal Process 38(7): 1126–1131

    Article  Google Scholar 

  4. Nyffenegger PA, Hinich MJ, Ritter D, Hansen S (2004) Material discrimination using bispectral signatures. J Acoust Soc Am 116(3): 1518–1523

    Article  ADS  Google Scholar 

  5. Worden K, Tomlinson GR (2001) Nonlinearity in experimental modal analysis. Philos Trans R Soc A 359: 113–130

    Article  MATH  ADS  Google Scholar 

  6. Messina AR, Vittal V (2005) Assessment of nonlinear interaction between nonlinearly coupled modes using higher order spectra. IEEE Trans Power Syst 20(1): 375–383

    Article  Google Scholar 

  7. Rivola A, White PR (1998) Bispectral analysis of the bilinear oscillator with application to the detection of cracks. J Sound Vib 216(5): 889–910

    Article  ADS  Google Scholar 

  8. Zhang GC, Chen J, Li FC, Li WH (2005) Extracting gear fault features using maximal bispectrum. Key Eng Mater 293(−294): 167–174

    Article  Google Scholar 

  9. Teng KK, Brandon JA (2001) Diagnostics of a system with an interface nonlinearity using higher order spectral estimators. Key Eng Mater 204(2): 271–285

    Article  Google Scholar 

  10. Marzocca P, Nichols JM, Milanese A, Seaver M, Trickey ST (2008) Second order spectra for quadratic non-linear systems by Volterra functional series: analytical description and numerical simulation. Mech Syst Signal Process 22: 1882–1895

    Article  ADS  Google Scholar 

  11. Gifford SJ, Tomlinson GR (1989) Recent advances in the application of functional series to non-linear structures. J Sound Vib 135(2): 289–317

    Article  ADS  Google Scholar 

  12. Worden K, Manson G (1999) Random vibrations of a multi-degree-of-freedom non-linear system using the Volterra series. J Sound Vib 226(2): 397–405

    Article  ADS  Google Scholar 

  13. Worden K, Tomlinson GR (2001) Nonlinearity in structural dynamics. Institute of Physics Publishing, Bristol

    Book  Google Scholar 

  14. Schetzen M (1980) The Volterra and Wiener theories of nonlinear systems. Wiley, New York

    MATH  Google Scholar 

  15. Krantz S (1999) The cauchy integral theorem and formula. Handbook of complex variables. BirkhSuser, Boston

    Google Scholar 

  16. Nichols JM, Milanese A, Marzocca P (2007) Characterizing the auto-bispectrum as a detector of nonlinearity in structural systems. In: Proceedings of the SPIE, health monitoring and smart nondestructive evaluation of structural and biological systems IV, vol 6532. SPIE Optical Engineering Press, Bellingham

  17. Bedrosian E, Rice SO (1971) The output properties of Volterra systems (nonlinear systems with memory) driven by harmonic and Gaussian inputs. Proc IEEE 59(12): 1688–1707

    Article  MathSciNet  Google Scholar 

  18. Boyd S, Tang YS, Chua LO (1983) Measuring Volterra kernels. IEEE Trans Circuits Syst CAS-30(8): 571–577

    Article  Google Scholar 

  19. Nikias CL, Raghuveer MR (1987) Bispectrum estimation: a digital signal processing framework. Proc IEEE 75(7): 869–891

    Article  ADS  Google Scholar 

  20. Nichols JM, Marzocca P, Milanese A (2008) On the use of the auto-bispectral density for detecting quadratic nonlinearity in structural systems. J Sound Vib 312: 726–735

    Article  ADS  Google Scholar 

  21. Huber PJ, Kleiner B, Gasser T, Dumermuth G (1971) Statistical methods for investigating phase relations in stationary stochastic processes. IEEE Trans Audio Electroacoust AU-19(1): 78–86

    Article  Google Scholar 

  22. Higham DJ (2001) An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev 43: 525–546

    Article  MATH  MathSciNet  Google Scholar 

  23. Nichols JM, Olson CC, Michalowicz JV, Bucholtz F (2009) The bispectrum & bicoherence for quadratically nonlinear systems subject to non-gaussian inputs. IEEE Trans Signal Process 57(10): 3879–3890

    Article  ADS  Google Scholar 

  24. Silva W (2005) Identification of non-linear aeroelastic systems based on the Volterra theory: progress and opportunities. Nonlinear Dyn 39: 25–62

    Article  MATH  Google Scholar 

  25. Schetzen M (1981) Nonlinear system modeling based on the Wiener theory. Proc IEEE 69(12): 1557–1573

    Article  Google Scholar 

  26. Bendat JS (1990) Nonlinear system analysis and identification from random data. Wiley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Marzocca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzocca, P., Nichols, J.M. & Milanese, A. An analytical formulation of bispectral densities for multiple degree-of-freedom systems. J Eng Math 67, 351–367 (2010). https://doi.org/10.1007/s10665-009-9349-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9349-0

Keywords

Navigation