Skip to main content

An algorithm for the complete symmetry classification of differential equations based on Wu’s method

Abstract

In this paper, an alternative algorithm which uses Wu’s method (differential characteristic set algorithm) for the complete symmetry classification of (partial) differential equations containing arbitrary parameter is proposed. The classification is determined by decomposing the solution set of determining equations into a union of a series of zero sets of differential characteristic sets of the corresponding differential polynomial system of the determining equations. Each branch of the decomposition yields a class of symmetries and associated parameters. The algorithm makes the classification become direct and systematic. This is also a new application of Wu’s method in the field of differential equations. As illustrative examples of our algorithm, the complete potential symmetry classifications of linear and nonlinear wave equations with an arbitrary function parameter and both classical and nonclassical symmetries of a parametric Burgers equation are presented.

This is a preview of subscription content, access via your institution.

References

  1. Olver PJ (1993) Applications of Lie groups to differential equations, 2 edn. Springer-Verlag, New York

    MATH  Google Scholar 

  2. Bluman GW, Kumei S (1991) Symmetries and differential equations. Applied Mathematical Sciences 81. Springer-Verlag/World Publishing Corp, New York

    Google Scholar 

  3. Ovsiannikov LV (1982) Group analysis of differential equations (trans: Ames WF). Academic Press, New York

    Google Scholar 

  4. Reid GJ (1991) Algorithms for reducing a system of PDEs to standard form, determining the dimension of its solution space and calculating its Taylor series solution. Eur J Appl Math 2: 293–318

    Article  MATH  Google Scholar 

  5. Reid GJ, Wittkopf AD (2000) Determination of maximal symmetry groups of classes of differential equations. In: Proceedings international symposium on symbolic and algebraic computation (ISSAC), St Andrews, Scotland, pp 272–280

  6. Reid GJ (1991) Finding abstract Lie symmetry algebras of differential equations without integrating determining equations. Eur J Appl Math 2: 319–340

    Article  MATH  Google Scholar 

  7. Reid GJ, Wittkopf AD, Boulton A (1996) Reduction of systems of nonlinear partial differential equations to simplified involutive forms. Eur J Appl Math 7: 605–635

    Article  MathSciNet  Google Scholar 

  8. Schwarz F (1992a) An algorithm for determining the size of symmetry groups. Computing 49: 95–115

    Article  MATH  MathSciNet  Google Scholar 

  9. Schwarz F (1992b) Reduction and completion algorithm for partial differential equations. In: Wang P (eds) Proceedings international symposium on symbolic and algebraic computation (ISSAC) 1992. ACM Press, Berkeley, pp 49–56

    Google Scholar 

  10. Wolf T, Brand A (1995) Investigating DEs with CRACK and related programs, SIGSAM bulletin, special issue, pp 1–8

  11. Mansfield E (1991) Differential Gröbner bases. Dissertation (PhD thesis), University of Sydney

  12. Mansfield EL (1993) Applications of the differential algebra package diffgrob2 to classical symmetries of differential equations. J Symb Comp 5–6(23): 517–533

    MathSciNet  Google Scholar 

  13. Lisle IG, Reid GJ (2006) Symmetry classification using noncommutative invariant differential operators. Found Comput Math 6(3): 353–386

    Article  MATH  MathSciNet  Google Scholar 

  14. Boulier F, Lazard D, Ollivier F, Petitot M (1995) Representation for the radical of a finitely generated differential ideal. In: Proceedings of international symposium on symbolic and algebraic computation (ISSAC) 1995. ACM Press, New York, pp 158–166

  15. Hubert E (1999) Essential components of algebraic differential equations. J Symb Comp 28(4–5): 657–680

    Article  MATH  MathSciNet  Google Scholar 

  16. Ibragimov NH (1994) CRC handbook of Lie group analysis of differential equations, vol 3: new trends in theoretical developments and computational methods. CRC Press, Boca Raton

    Google Scholar 

  17. Hereman W (1996) Review of symbolic software for Lie symmetry analysis, vol 3. CRC Press, Boca Raton, pp 367–413

    Google Scholar 

  18. Topunov VL (1989) Reducing systems of linear partial differential equations to a passive form. Acta Appl Math 16: 191–206

    Article  MATH  MathSciNet  Google Scholar 

  19. Riquier C (1910) Les systèmes d’équations aux dérivées partielles. Gauthier-Villars, Paris

    Google Scholar 

  20. Janet M (1920) Sur les systèmes d’équations aux dérivées partielles. J de Math 3: 65–151

    Google Scholar 

  21. Kolchin ER (1973) Differential algebra and algebraic groups. Academic Press, New York

    MATH  Google Scholar 

  22. Ritt JF (1950) Differential algebra, AMS Colloquium publications. American Mathematical Society, New York

    Google Scholar 

  23. Clarkson PA, Mansfield EL (2001) Open problems in symmetry analysis. In: Leslie JA, Robart T (eds) Geometrical study of differential equations. Contemporary Mathematics Series, vol 285. AMS, Providence, RI, pp 195–205

    Google Scholar 

  24. Ames WF, Lohner RJ, Adams E (1981) Group properties of u tt  = [f(u)u x ] x . Int J Non-Linear Mech 16: 439–447

    Article  MATH  MathSciNet  Google Scholar 

  25. Fushchych WI, Shtelen WM, Serov NI (1993) Symmetry analysis and exact solutions of nonlinear equations of mathematical physics (transl: English). Kluwer, Dordrecht

    Google Scholar 

  26. Lie S (1881) Über die Integration durch bestimmte Integrale von einer Klass linear partieller Differentialgleichungen. Arch fur Math VI(H3): 328–368

    Google Scholar 

  27. Ibragimov NH, Torrisi M, Valenti A (1991) Preliminary group classification of equation v tt  = f(v,v x )v xx  + g(x,v x ). J Math Phys 32: 2988–2995

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Akhatov I, Gazizov R, Ibragimov NH (1991) Nonlocal symmetries: heuristic approach. J Soviet Math 55: 1401–1450

    Article  Google Scholar 

  29. Torrisi M, Tracina R (1998) Equivalence transformation and symmetries for a heat conduction model. Int J Non-linear Mech 33: 473–487

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhdanov R, Lahno V (1990) Group classification of heat conductivity equations with a nonlinear source. J Phys A Math Gen 32: 7405–7418

    Article  MathSciNet  ADS  Google Scholar 

  31. Nikitin AG, Popovych RO (2001) Group classification of nonlinear Schrödinger equations. Ukr Math J 53: 1053–1060

    Article  MATH  MathSciNet  Google Scholar 

  32. Popovych RO, Ivanova NM (2004) New results on group classification of nonlinear diffusion-convection equations. J Phys A Math Gen 37: 7547–7565

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Huang DJ, Ivanova NM (2007) Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations. J Math Phys 48(7): 1–23 (Article No 073507)

    Article  MathSciNet  Google Scholar 

  34. Wittkopf AD (2004) Algorithms and implementations for differential elimination. PhD thesis, Department of Mathematics, SFU, Canada

  35. Wu WT (1984) Basic principles of mechanical theorem—proving in elementary geometry. J Syst Sci Math Sci 4: 207–235

    Google Scholar 

  36. Wu WT (2000) Mathematics mechanization. Science Press, Beijing

    MATH  Google Scholar 

  37. Wu WT (1989) On the foundation of algebraic differential geometry. J Syst Sci Math Sci 2: 289–312

    MATH  Google Scholar 

  38. Cox D, Little J, O’Shea D (1992) Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra. Springer-Verlag, New York

    MATH  Google Scholar 

  39. Chaolu T (1999) Wu-d-characteristic algorithm of symmetry vectors for partial differential equations. Acta Math Sci (in Chinese) 19(3): 326–332

    Google Scholar 

  40. Chaolu T (2003) An algorithmic theory of reduction of a differential polynomial system. Adv Math (China) 32(2): 208–220

    MathSciNet  Google Scholar 

  41. Chaolu T, Gao XS (2002) Nearly d-char-set for a differential polynomial system. Acta Math Sci (in Chinese) 45(6): 1041–1050

    MATH  MathSciNet  Google Scholar 

  42. Gao XS, Wang DK, Liao Q, Yang H (2006) Equation solving and machine proving—problem solving with MMP (in Chinese). Science Press, Beijing (The Package can be downloaded from http://www.mmrc.iss.ac.cn/xgao/software.html)

  43. Clarkson PA, Mansfield EL (1994) Algorithms for the non-classical method of symmetry reductions. SIAM J Appl Math 54: 1693–1719

    Article  MATH  MathSciNet  Google Scholar 

  44. Collins GE (1967) Subresultants and reduced polynomial sequences. J ACM 14: 128–142

    Article  MATH  Google Scholar 

  45. Li ZM (1987) A new proof of Collin’s theorem, MM-Res preprints. MMRC 1: 33–37

    Google Scholar 

  46. Baikov VA, Gazizov RA, Ibragimov NH (1988) Approximate group analysis of the nonlinear equation \({u_{tt}-(f(u)u_x)_x+\epsilon\phi(u)u_t=0}\). Differents Uravn 24(7): 1127

    MathSciNet  Google Scholar 

  47. Bluman GW, Chaolu T (2005) Local and nonlocal symmetries for nonlinear telegraph equations. J Math Phys 46: 1–9 (Article No 023505)

    Google Scholar 

  48. Bluman GW, Chaolu T (2005) Conservation laws for nonlinear telegraph-type equations. J Math Anal Appl 310: 459–476

    MATH  MathSciNet  Google Scholar 

  49. Bluman GW, Chaolu T (2005) Comparing symmetries and conservation laws of nonlinear telegraph equations. J Math Phys 46: 1–14 (Article No 073513)

    Google Scholar 

  50. Bluman GW, Chaolu T, Anco SC (2006) New conservation laws obtained directly from symmetry action on a known conservation law. J Math Anal Appl 322(1): 233–250

    Article  MATH  MathSciNet  Google Scholar 

  51. Seidenberg A (1956) An elimination theory for differential algebra. Univ California Publ Math (NS) 3(2): 31–38

    MathSciNet  Google Scholar 

  52. Rosenfeld A (1959) Specializations in differential algebra. Trans Am Math Soc 90: 394–407

    Article  MATH  MathSciNet  Google Scholar 

  53. Li ZM, Wang DM (1999) Coherent, regular and simple systems in zero decompositions of partial differential systems. J Syst Sci Math Sci 12(Suppl): 43–60

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temuer Chaolu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chaolu, T., Jing, P. An algorithm for the complete symmetry classification of differential equations based on Wu’s method. J Eng Math 66, 181–199 (2010). https://doi.org/10.1007/s10665-009-9344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9344-5

Keywords

  • Differential characteristic set algorithm
  • Parametric differential equations
  • Symmetry classification
  • Wu’s method