Skip to main content
Log in

Air gaps in vertical continuous casting in round moulds

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A recent asymptotic thermomechanical model for the formation and evolution of air gaps in vertical continuous casting is extended from an idealized geometry to a cylindrical one that is of actual industrial relevance. The differences between the models, in particular as regards the criterion for the onset of air-gap formation for the two geometrical configurations, are noted. Parameter regimes for which the thermal and mechanical problems decouple are discussed. In such cases, corresponding to thermal stresses dominating viscosplastic ones, asymptotic analysis helps to reduce the model to a moving-boundary problem for the temperature, along with a boundary condition in integro–differential form that describes the evolution of the air gap. Sample computations are carried out using parameters for the continuous casting of copper, and the value of the model results as a new and useful benchmark for verifying 3D numerical codes describing the thermomechanics in continuous casting models is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Savage J (1962) A theory of heat transfer and air gap formation in continuous casting molds. J Iron Steel Inst 198: 41–47

    Google Scholar 

  2. Richmond O, Tien RH (1971) Theory of thermal stresses and air-gap formation during the early stages of solidification in a rectangular mold. J Mech Phys Solids 19: 273–284

    Article  ADS  Google Scholar 

  3. Kristiansson J-O (1982) Thermal stresses in the early stage of the solidification of steel. J Therm Stresses 5: 315–330

    Article  Google Scholar 

  4. Tien RH, Richmond O (1982) Theory of maximum tensile stresses in the solidifying shell of a constrained regular casting. J Appl Mech 49: 481–486

    Article  Google Scholar 

  5. Grill AK, Sorimachi K, Brimacombe JK (1976) Heat flow, gap formation and break-outs in the continuous casting of steel slabs. Metall Mater Trans B 7B: 177–189

    ADS  Google Scholar 

  6. Kelly JE, Michalek KP, O’Connor TG et al (1988) Initial development of thermal and stress fields in continuously cast steel billets. Metall Mater Trans A 19A: 2589–2602

    ADS  Google Scholar 

  7. Bellet M, Decultieux F, Menai M et al (1996) Thermomechanics of the cooling stage in casting processes: three-dimensional finite element analysis and experimental validation. Metall Mater Trans B 27B: 81–99

    Article  ADS  Google Scholar 

  8. Huespe AE, Cardona A, Fachinotti V (2000) Thermomechanical model of a continuous casting process. Comput Methods Appl Mech Eng 182: 439–455

    Article  MATH  Google Scholar 

  9. Kim KY (2003) Analysis of gap formation at mold-shell interface during solidification of aluminium alloy plate. ISIJ Int 43: 647–652

    Article  Google Scholar 

  10. Li C, Thomas BG (2004) Thermomechanical finite-element model of shell behavior in continuous casting of steel. Metall Mater Trans B 35B: 1151–1172

    Article  Google Scholar 

  11. Sun D, Annapragada SR, Garimella SV et al (2007) Analysis of gap formation in the casting of energetic materials. Numer Heat Transf Part A 51: 415–444

    Article  ADS  Google Scholar 

  12. Vynnycky M (2009) An asymptotic model for the formation and evolution of air gaps in vertical continuous casting. Proc R Soc A 465: 1617–1644

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Cherukuri HP, Johnson RE (2001) Modelling vertical continuous casting with temperature-dependent material properties. Int J Mech Sci 43: 1243–1257

    Article  MATH  Google Scholar 

  14. Das SK, Sarkar A (1996) Computational modelling of thermal transport phenomena in continuous casting process based on non-orthogonal control volume approach. Commun Numer Methods Eng 12: 657–671

    Article  MATH  Google Scholar 

  15. Guo LL, Wang XD, Zhan HY et al (2007) Mould heat transfer in the continuous casting of round billet. ISIJ Int 47: 1108–1116

    Article  Google Scholar 

  16. Härkki M, Miettinen J (1999) Mathematical modeling of copper and brass upcasting. Metall Mater Trans B 30: 75–98

    Article  Google Scholar 

  17. Johnson RE, Cherukuri HP (1999) Vertical continuous casting of bars. Proc R Soc A 455: 227–244

    Article  MATH  ADS  Google Scholar 

  18. Lee JE, Han HN, Oh KH et al (1999) A fully coupled analysis of fluid flow, heat transfer and stress in continuous round billet casting. ISIJ Int 39: 435–444

    Article  Google Scholar 

  19. Schwerdtfeger K, Sato M, Tacke K-H (1998) Stress formation in solidifying bodies. Solidification in a round continuous casting mold. Metall Mater Trans B 29: 1057–1068

    Article  Google Scholar 

  20. Yao M, Yin HB, Fang DC (2004) Real-time analysis on non-uniform heat transfer and solidification in mould of continuous casting round billets. ISIJ Int 44: 1696–1704

    Article  Google Scholar 

  21. Yao M, Yin HB, Wang JC et al (2005) Monitoring and analysis of local mould thermal behaviour in continuous casting of round billets. Ironmaking Steelmaking 32: 359–368

    Article  Google Scholar 

  22. Yin HB, Yao M, Zhan HY et al (2006) 3D stress model with friction in and of mould for round billet continuous casting. ISIJ Int 46: 546–552

    Article  Google Scholar 

  23. Yin HB, Yao M (2007) Inverse problem-based analysis on non-uniform profiles of thermal resistance between strand and mould for continuous round billets casting. J Mater Process Technol 183: 49–56

    Article  Google Scholar 

  24. Ho K, Pehlke RD (1984) Mechanics of heat transfer at a metal-mold interface. AFS Trans 61: 587–598

    Google Scholar 

  25. Nishida Y, Droste W, Engler S (1986) The air gap formation process at the casting mold interface and the heat transfer mechanism through the gap. Metall Mater Trans B 17: 833–844

    Article  ADS  Google Scholar 

  26. Jablonka A (1995) Spannungen und Deformationen in Elektro-Schlacke-Umschmelzblöcken während des Umschmelzens, der nachfolgenden Abkühlung und der sich anschliessenden Wärmebehandlung. Dissertation, Technische Universität Clausthal, Clausthal-Zellerfeld, Germany

  27. Freed AD (1988) Thermoviscoplastic model with application to copper. NASA Technical Paper 2845

  28. Comsol Multiphysics 3.5a. http://www.comsol.com

  29. Weiner JH, Boley BA (1963) Elasto-plastic thermal stresses in a solidifying body. J Mech Phys Solids 11: 145–154

    Article  MATH  ADS  Google Scholar 

  30. Å berg J, Vynnycky M, Fredriksson H et al (2005) An on-site experimental heat flux study and its interpretation in a FEMLAB finite element simulation of continuous casting of copper in the South-Wire process. Trans Indian Inst Met 58: 509–515

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vynnycky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vynnycky, M. Air gaps in vertical continuous casting in round moulds. J Eng Math 68, 129–152 (2010). https://doi.org/10.1007/s10665-009-9341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9341-8

Keywords

Navigation